

 LECTURENOTES

 SOFTWARE ENGINEERING

 B.Tech, 6THSemester,CSE

 Prepared by:

MRS SANJUKTA URMA

 Lecturer in Computer Science & Engineering

Vikash Institute of Technology Bargarh
(Approved by AICTE, New Delhi & Affiliated to BPUT, Odisha)

BarahagudaCanalChowk,Bargarh,Odisha-768040
www.vitbargarh.ac.in

http://www.vitbargarh.ac.in/

DISCLAIMER

 This document does not claim any originality and

cannot be used as a substitute for prescribed

textbooks.

 The information presented here is merely a collection

by Mrs. SANJUKTA URMA with the inputs of students

for their respective teaching assignments as an

additional tool for the teaching- learning process.

 Various sources as mentioned at the reference of the

document as well as freely available materials from

internet were consulted for preparing this document.

 Further, this document is not intended to be used for

commercial purpose and the authors are not

accountable for any issues, legal or otherwise, arising

out of use of this document.

 The author makes no representations or warranties

with respect to the accuracy or completeness of the

contents of this document and specifically disclaims any

implied warranties of merchantability or fitness for a

particular purpose.

COURSECONTENT

 SOFTWARE ENGINEERING

B.Tech, 6THSemester, CSE

 Module-I: Software Process Models:
Software Product, Software crisis, Handling complexity through Abstraction and
Decomposition, Overview of software development activities, Process Models, Classical

waterfall model, iterative waterfall model, prototyping mode, evolutionary model, spiral
model, RAD model, Agile models: Extreme Programming, and Scrum.

 Module-II: Software Requirements Engineering
Requirement Gathering and Analysis, Functional and Non-functional requirements, Software
Requirement Specification (SRS), IEEE 830 guidelines, Decision tables and trees. Structured Analysis

& Design: Overview of design process, High- level and detailed design, Cohesion and coupling,
Modularity and layering, Function–Oriented software design: Structured Analysis using DFD
Structured Design using Structure Chart, Basic concepts of Object Oriented Analysis & Design. User

interface design, Command language, menu and iconic interfaces

 Module-III Coding and Software Testing Techniques
Coding, Code Review, documentation. Testing: - Unit testing, Black-box Testing, White-box testing,

Cyclomatic complexity measure, coverage analysis, mutation testing, Debugging techniques,
Integration testing, System testing, Regression testing. Software Reliability and Software

 Module- Maintenance:
Basic concepts in software reliability, reliability measures, reliability growth modelling, Quality SEI
CMM, Characteristics of software maintenance, software reverse engineering, software
reengineering, software reuse. Emerging Topics: Client-Server Software Engineering, Service-

oriented Architecture (SOA), and Software as a Service (SaaS)

 1

REFERENCES 2

 SOFTWARE ENGINEERING 3

B.Tech, 6THSemester, CSE 4

Books:
1. Fundamentals of Software Engineering, Rajib Mall , 5th Ed, PHI, 2018.

2. Software Engineering, A Practitioner’s Approach, Roger S. Pressman, 8th Ed, TMG Hill.
2019

3. Software Engineering, I. Sommerville, 9th Ed., Pearson Education, 2011

 5

 6

Digital Learning Resources: 7

 8

Course Name: Software Engineering

Course Link: https://nptel.ac.in/courses/106/105/106105182/

Course Instructor: Prof. Rajib Mall, IIT Kharagpur

Course Name: Software Engineering

Course Link: https://nptel.ac.in/courses/106/101/106101061/

Course Instructor: Prof. N.L. Sarda, Prof. R. K Joshi, Prof. U. Bellur IIT
Bombay

 9

 10

 11

 12

 13

 14

 15

 MODULE-I 16

 INTRODUCTION 17

 18

Commercial usage of computers now spans the last sixty years. Computers were 19

very slow in the initial years and lacked sophistication. Since then, their 20

computational power and sophistication increased rapidly, while their prices 21

dropped dramatically. To get an idea of the kind of improvements that have 22

occurred to computers, consider the following analogy. If similar improvements 23

could have occurred to aircrafts, now personal mini-airplanes should have become 24

available, costing as much as a bicycle, and flying at over 1000 times the speed of 25

the supersonic jets. To say it in other words, the rapid strides in computing 26

technologies are unparalleled in any other field of human endeavor. 27

What is software engineering? 28

A popular definition of software engineering is: “A systematic collection of good 29

program development practices and techniques”. Good program development 30

techniques have resulted from research innovations as well as from the lessons 31

learnt by programmers through years of programming experiences. An alternative 32

definition of software engineering is: “An engineering approach to develop 33

software”. Based on these two point of views, we can define software engineering 34

as follows: Software engineering discusses systematic and cost-effective 35

techniques for software development. These techniques help develop software 36

using an engineering approach. 37

 38

Software Product- 39

 Software Products are nothing but software systems delivered to the customer 40

with the documentation that describes how to install and use the system. In certain 41

cases, software products may be part of system products where hardware, as well as 42

software, is delivered to a customer. Software products are produced with the help 43

of the software process. The software process is a way in which we produce 44

software. 45

Types of Software Products 46

Software products fall into two broad categories: 47

Generic products: Generic products are stand-alone systems that are developed by a 48

production unit and sold on the open market to any customer who can buy them. 49

Customized Products: Customized products are the systems that are commissioned 50

by a particular customer. Some contractor develops the software for that customer. 51

Characteristics of Software Product 52

A well-engineered software product should possess the following essential 53

characteristics: 54

 55

Characteristics of Software Product 56

Efficiency: The software should not make wasteful use of system resources such as 57

memory and processor cycles. 58

Maintainability: It should be possible to evolve the software to meet the changing 59

requirements of customers. 60

Dependability: It is the flexibility of the software that ought to not cause any 61

physical or economic injury in the event of system failure. It includes a range of 62

characteristics such as reliability, security, and safety. 63

In time: Software should be developed well in time. 64

Within Budget: The software development costs should not be overrun, and they 65

should be within the budgetary limit. 66

Functionality: The software system should exhibit the proper functionality, i.e., it 67

should perform all the functions it is supposed to perform. 68

Adaptability: The software system should have the ability to adapted to a reasonable 69

extent with the changing requirements. 70

Software Crisis- 71

Software Crisis is a term used in computer science for the difficulty of writing useful 72

and efficient computer programs in the required time. The software crisis was due 73

to using the same workforce, same methods, and same tools even though rapidly 74

increasing software demand, the complexity of software, and software challenges. 75

With the increase in software complexity, many software problems arose because 76

existing methods were insufficient. 77

Suppose we use the same workforce, same methods, and same tools after the fast 78

increase in software demand, software complexity, and software challenges. In that 79

case, there arise some issues like software budget problems, software efficiency 80

problems, software quality problems, software management, and delivery problems, 81

etc. This condition is called a Software Crisis. 82

 83
 84

Causes of Software Crisis 85

Following are the causes of Software Crisis: 86

 The cost of owning and maintaining software was as expensive as developing the 87

software. 88

 At that time Projects were running overtime. 89

 At that time Software was very inefficient. 90

https://www.geeksforgeeks.org/challenges-of-software-developers/
https://www.geeksforgeeks.org/software-engineering-software-quality/
https://www.geeksforgeeks.org/software-engineering-software-project-management-spm/

 The quality of the software was low quality. 91

 Software often did not meet user requirements. 92

 The average software project overshoots its schedule by half. 93

 At that time Software was never delivered. 94

Non-optimal resource utilization. 95

 Challenging to alter, debug, and enhance. 96

 The software complexity is harder to change. 97

 98

A Solution to the Software Crisis 99

 There is no single solution to the crisis. One possible solution to a software crisis 100

is Software Engineering because software engineering is a systematic, disciplined, 101

and quantifiable approach. For preventing software crises, there are some 102

guidelines: 103

 Reduction in software over budget. 104

 The quality of the software must be high. 105

 Less time is needed for a software project. 106

 Experienced and skilled people working on the software project. 107

 Software must be delivered. 108

 Software must meet user requirements. 109

 110

SOFTWARE DEVELOPMENT PROJECTS 111

Before discussing about the various types of development projects that are being 112

undertaken by software development companies, let us first understand the 113

important ways in which professional software differs from toy software such as 114

those written by a student in his first programming assignment. 115

Programs versus Products 116

Many toy software are being developed by individuals such as students for their 117

classroom assignments and hobbyists for their personal use. These are usually 118

small in size and support limited functionalities. Further, the author of a program 119

is usually the sole user of the software and himself maintains the code. These toy 120

software therefore usually lack good user-interface and proper documentation. 121

Besides these may have poor maintainability, efficiency, and reliability. Since this 122

toy software do not have any supporting documents such as users’ manual, 123

https://www.geeksforgeeks.org/software-engineering-software-project-management-complexities/
https://www.geeksforgeeks.org/software-engineering-introduction-to-software-engineering/

maintenance manual, design document, test documents, etc., we call this toy 124

software as programs. 125

In contrast, professional software usually have multiple users and, therefore, 126

have good user-interface, proper users’ manuals, and good documentation 127

support. Since, a software product has a large number of users, it is 128

systematically designed, carefully implemented, and thoroughly tested. In 129

addition, a professionally written software usually consists not only of the 130

program code but also of all associated documents such as requirements 131

specification document, design document, test document, users’ manuals, etc. A 132

further difference is that professional software are often too large and complex to 133

be developed by any single individual. It is usually developed by a group of 134

developers working in a team. 135

A professional software is developed by a group of software developers working 136

together in a team. It is therefore necessary for them to use some systematic 137

development methodology. Otherwise, they would find it very difficult to 138

interface and understand each other’s work, and produce a coherent set of 139

documents. 140

Even though software engineering principles are primarily intended for use in 141

development of professional software, many results of software engineering can 142

effectively be used for development of small programs as well. However, when 143

developing small programs for personal use, rigid adherence to software 144

engineering principles is often not worthwhile. An ant can be killed using a gun, 145

but it would be ridiculously inefficient and inappropriate. CAR Hoare [1994] 146

observed that rigorously using software engineering principles to develop toy 147

programs is very much like employing civil and architectural engineering 148

principles to build sand castles for children to play. 149

Abstraction 150

Abstraction refers to construction of a simpler version of a problem by ignoring 151

the details. The principle of constructing an abstraction is popularly known as 152

modelling (or model construction). 153

 154

When using the principle of abstraction to understand a complex problem, we 155

focus our attention on only one or two specific aspects of the problem and ignore 156

the rest. Whenever we omit some details of a problem to construct an 157

abstraction, we construct a model of the problem. In everyd ay life, we use the 158

Abstraction is the simplification of a problem by focusing on only one aspect of the
problem while omitting all other aspects.

principle of abstraction frequently to understand a problem or to assess a 159

situation. Consider the following two examples. 160

 Suppose you are asked to develop an overall understanding of some 161

country. No one in his right mind would start this task by meeting all the 162

citizens of the country, visiting every house, and examining every tree of 163

the country, etc. You would probably take the help of several types of 164

abstractions to do this. You would possibly start by referring to and 165

understanding various types of maps for that country. A map, in fact, is an 166

abstract representation of a country. It ignores detailed information such 167

as the specific persons who inhabit it, houses, schools, play grounds, 168

trees, etc. Again, there are two important types of maps—physical and 169

political maps. A physical map shows the physical features of an area; 170

such as mountains, lakes, rivers, coastlines, and soon. On the other hand, 171

the political map shows states, capitals, and national boundaries, etc. The 172

physical map is an abstract model of the country and ignores the state and 173

district boundaries. The political map, on the other hand, is another 174

abstraction of the country that ignores the physical characteristics such as 175

elevation of lands, vegetation, etc. It can be seen that, for the same object 176

(e.g. country), several abstractions are possible. In each abstraction, some 177

aspects of the object is ignored. We understand a problem by abstracting 178

out different aspects of a problem (constructing different types of models) 179

and understanding them. It is not very difficult to realize that proper use 180

of the principle of abstraction can be a very effective help to master even 181

intimidating problems. 182

 183

Consider the following situation. Suppose you are asked to develop an 184

understanding of all the living beings inhabiting the earth. If you use the 185

naive approach, you would start taking up one living being after another 186

who inhabit the earth and start understanding them. Even after putting 187

in tremendous effort, you would make little progress and left confused 188

since there are billions of living things on earth and the information 189

would be just too much for any one to handle. Instead, what can be done 190

is to build and understand an abstraction hierarchy of all living beings as 191

shown in Figure 1.7. At the top level, we understand that there are 192

essentially three fundamentally different types of living beings—plants, 193

animals, and fungi. Slowly more details are added about each type at each 194

successive level, until we reach the level of the different species at the leaf 195

level of the abstraction tree. 196

 197

Figure 1.7: An abstraction hierarchy classifying living organisms. 198

 199

A single level of abstraction can be sufficient for rather simple problems. 200

However, more complex problems would need to be modelled as a hierarchy of 201

abstractions. A schematic representation of an abstraction hierarchy has been 202

shown in Figure 1.6(a). The most abstract representation would have only a few 203

items and would be the easiest to understand. After one understands the 204

simplest representation, one would try to understand the next level of 205

abstraction where at most five or seven new information are added and so on 206

until the lowest level is understood. By the time, one reaches the lowest level, 207

he would have mastered the entire problem. 208

Decomposition 209

Decomposition is another important principle that is available in the repertoire 210

of a software engineer to handle problem complexity. This principle is profusely 211

made use by several software engineering techniques to contain the exponential 212

growth of the perceived problem complexity. The decomposition principle is 213

popularly known as the divide and conquer principle. 214

 215

The decomposition principle advocates decomposing the problem into many small
independent parts. The small parts are then taken up one by one and solved
separately. The idea is that each small part would be easy to grasp and understand
and can be easily solved. The full problem is solved when all the parts are solved.

A popular way to demonstrate the decomposition principle is by trying to 216

break a large bunch of sticks tied together and then breaking them individually. 217

The decomposition o f a large problem into many small parts. However, it is very 218

important to understand that any arbitrary decomposition of a problem into 219

small parts would not help. The different parts after decomposition should be 220

more or less independent of each other. That is, to solve one part you should not 221

have to refer and understand other parts. If to solve one part you would have to 222

understand other parts, then this would boil down to understanding all the 223

parts together. This would effectively reduce the problem to the original problem 224

before decomposition (the case when all the sticks tied together). Therefore, it is 225

not sufficient to just decompose the problem in any way, but the decomposition 226

should be such that the different decomposed parts must be more or less 227

independent of each other. 228

As an example o f a use of the principle of decomposition, consider the 229

following. You would understand a book better when the contents are 230

decomposed (organized) into more or less independent chapters. That is, 231

each chapter focuses on a separate topic, rather than when the book mixes up all 232

topics together throughout all the pages. Similarly, each chapter should be 233

decomposed into sections such that each section discusses a different issue. Each 234

section should be decomposed into subsections and so on. If various subsections 235

are nearly independent of each other, the subsections can be understood one by 236

one rather than keeping on cross referencing to various subsections across the 237

book to understand one. 238

SOFTWARE LIFE CYCLE MODELS
We discussed a few basic issues in software engineering. We pointed out a few
important differences between the exploratory program development style and the
software engineering approach. Please recollect from our discussions in Chapter 1 that
the exploratory style is also known as the build and fix programming. In build and fix
programming, a programmer typically starts to write the program immediately after
he has formed an informal understanding of the requirements. Once program writing
is complete, he gets down to fix anything that does not meet the user’s expectations.
Usually, a large number of code fixes are required even for toy programs. This pushes
up the development costs and pulls down the quality of the program. Further, this
approach usually turns out to be a recipe for project failure when used to develop non-
trivial programs requiring team effort. In contrast to the build and fix style, the
software engineering approaches emphasize software development through a well-
defined and ordered set of activities. These activities are graphically modelled
(represented) as well as textually described and are variously called a s software life
cycle model, software development life cycle (SDLC) model, and software development
process model. Several life cycle models have so far been proposed. However, in this
Chapter we confine our attention to only a few important and commonly used ones.
In this chapter, w e first discuss a few basic concepts associated with life cycle models.
Subsequently, we discuss the important activities that have been prescribed to be
carried out in the classical waterfall model. This is intended to provide an insight into
the activities that are carried out as part of every life cycle model. In fact, the classical
waterfall model can be considered as a basic model and all other life cycle models as
extensions of this model to cater to specific project situations. After discussing the
waterfall
model, we discuss a few derivatives of this model. Subsequently we discuss the spiral
model that generalizes various life cycle models. Finally, we discuss a few recently
proposed life cycle models that are categorized under the umbrella term agile model.
Of late, agile models are finding increasing acceptance among developers and
researchers.

Software life cycle

It is well known that all living organisms undergo a life cycle. For example when a
seed is planted, it germinates, grows into a full tree, and finally dies. Based on this
concept of a biological life cycle, the term software life cycle has been defined to imply
the different stages (or phases) over which a software evolves from an initial customer
request for it, to a fully developed software, and finally to a stage where it is no longer
useful to any user, and then it is discarded.
As we have already pointed out, the life cycle of every software starts with a request
for it by one or more customers. At this stage, the customers are usually not clear about
all the features that would be needed, neither can they completely describe the
identified features in concrete terms, and can only vaguely describe what is needed.

Based on this description, we can define the software life cycle as follows:

With this knowledge of a software life cycle, we discuss the concept of a software life
cycle model and explore why it is necessary to follow a life cycle model in professional
software development environments.

Software development life cycle (SDLC) model

In any systematic software development scenario, certain well-defined activities need
to be performed by the development team and possibly by the customers as well, for
the software to evolve from one stage in its life cycle to the next. For example, for a
software to evolve from the requirements specification stage to the design stage,
the developers n e e d to elicit requirements from the customers, analyze those
requirements, and formally document the requirements in the form of an SRS
document.

A software development life cycle (SDLC) model (also called software life cycle model
and software development process model) describes the different activities that need to
be carried out for the software to evolve in its life cycle. Throughout our discussion, we
shall use the terms software development life cycle (SDLC) and software development
proce s s interchangeably. However, some authors distinguish an SDLC from a software
development process. In their usage, a software development process describes the life
cycle activities more precisely and elaborately, as compared to an SDLC. Also, a
development process may not only describe various activities that are carried out over
the life cycle, but also prescribe a specific methodologies to carry out the activities, and
also recommends the the specific documents and other artifacts that should be
produced at the end of each phase. In this sense, the term SDLC can be considered to be
a more generic term, as compared to the development process and several
development processes may fit the same SDLC.

An SDLC is represented graphically by drawing various stages of the life cycle and
showing the transitions among the phases. This graphical model is usually
accompanied by a textual description of various activities that need to be carried out
during a phase before that phase can be considered to be complete. In simple words,
we can define an SDLC as follows:

WATERFALL MODEL AND ITS EXTENSIONS

The waterfall model and its derivatives were extremely popular in the 1970s and still
are heavily being used across many development projects. The waterfall model is
possibly the most obvious and intuitive way in which software can be developed
through team effort. We can think of the waterfall model as a generic model that has
been extended in many ways for catering to certain specific software development
situations to realise all other software life cycle models. For this reason, after discussing
the classical and iterative waterfall models, we discuss its various extensions.

Classical Waterfall Model

Classical waterfall model is intuitively the most obvious way to develop software. It is
simple but idealistic. In fact, it is hard to put this model into use in any non-trivial
software development project. One might wonder if this model is hard to use in
practical development projects, then why study it at all? The reason is that all other life
cycle models can be thought of as being extensions of the classical waterfall model.

Therefore, it makes sense to first understand the classical waterfall model, in order to
be able to develop a proper understanding of other life cycle models. Besides, we shall
see later in this text that this model though not used for software development; is
implicitly used while documenting software.
The classical waterfall model divides the life cycle into a set of phases as

Figure 2.1: Classical waterfa l model.

shown in Figure 2.1. It can be easily observed from this figure that the diagrammatic
representation of the classical waterfall model resembles a multi-level waterfall. This
resemblance justifies the name of the model.

Phases of the classical waterfall model

The different phases of the classical waterfall model have been shown in Figure 2.1. As
shown in Figure 2.1, the different phases are—feasibility study, requirements analysis
and specification, design, coding and unit testing, integration and system testing, and
maintenance. The phases starting from the feasibility study to the integration and
system testing phase are known as the development phases. A software is developed
during the development phases, and at the completion of the development phases, the
software is delivered to the customer. After the delivery of software, customers start
to use the software signalling the commencement of the operation phase. As the
customers start to use the software, changes to it become necessary on account of bug
fixes and feature extensions, causing maintenance works to be undertaken. Therefore,
the last phase is also known as the maintenance phase of the life cycle. It needs to be
kept in mind that some of the text
In the waterfall model, different life cycle phases typically require relatively different
amounts of efforts to be put in by the development team. The relative amounts of
effort spent on different phases for a typical software has been shown in Figure 2.2.
Observe from Figure 2.2 that among all the life cycle phases, the maintenance phase
normally requires the maximum effort. On the average, about 60 per cent of the total
effort put in by the development team in the entire life cycle is spent on the
maintenance activities alone.

Figure 2.2: Relative effort distribution among different phases of a typical product.
However, among the development phases, the integration and system testing phase
requires the maximum effort in a typical development project. In the following
subsection, we briefly describe the activities that are carried out in the different phases
of the classical waterfall model.

Feasibility study

The main focus of the feasibility study stage is to determine whether it would be
financially and technically feasible to develop the software. Thefeasibility study
involves carrying out several activities such as collection of basic information
relating to the software such as the different data items that would be input to the
system, the processing required to be carried out on these data, the output data
required to be produced by the system, as well as various constraints on the
development.

Requirements analysis and specification

The aim of the requirements analysis and specification phase is to understand
the exact requirements of the customer and to document

 them properly. This phase consists of two distinct activities, namely requirements
gathering and analysis, and requirements specification. In the following subsections,
we give an overview of these two activities:

 Requirements gathering and analysis: The goal of the requirements gathering
activity is to collect all relevant information regarding the software to be developed
from the customer with a view to clearly understand the requirements. For this, first
requirements are gathered from the customer and then the gathered requirements
are analysed. The goal of the requirements analysis activity is to weed out the
incompleteness and inconsistencies in these gathered requirements. Note that a n
inconsistent requirement is one in which some part of the requirement contradicts
with some other part. On the other hand, a n incomplete requirement is one in which
some parts of the actual requirements have been omitted.
 Requirements specification: After the requirement gathering and analysis

activities are complete, the identified requirements are documented. This is called a
software requirements specification (SRS) document. The SRS document is written
using end-user terminology. This makes the SRS document understandable to the
customer. Therefore, understandability of the SRS document is an important issue.
The SRS document normally serves as a contract between the development team and
the customer. Any future dispute between the customer and the developers can be
settled by examining the SRS document. The SRS document is therefore an important
document which must be thoroughly understood by the development team, and
reviewed jointly with the customer. The SRS document not only forms the basis for
carrying out all the development activities, but several documents such as users’
manuals, system test plan, etc. are prepared directly based on it. In Chapter 4, we
examine the requirements analysis activity and various issues involved in developing
a good SRS document in more detail.

Design

The goal of the design phase is to transform the requirements specified in the SRS
document into a structure that is suitable for implementation in some programming
language. In technical terms, during the design phase the softwre architecture is derived
from the SRS document. Two distinctly different design approaches are popularly being
used at present—the procedural and object-oriented design approaches. In the
following, we briefly discuss the essence of these two approaches.

Procedural design approach: The traditional design approach is in use in many
software development projects at the present time. This traditional design
technique is based on the data flow-oriented design approach. It consists of two
important activities; first structured analysis of the requirements specification
is carried out where the detailed structure of the problem is examined. This is
followed by a structured design step where the results of structured analysis
are transformed into the software design.

Object-oriented design approach: In this technique, various objects that occur in
the problem domain and the solution domain are first identified and the
different relationships that exist among these objects are identified. The object
structure is further refined to obtain the detailed design. The OOD approach is
credited to have several benefits such as lower development time and effort,
and better maintainability of the software.

Coding and unit testing

The purpose of the coding and unit testing phase is to translate a software design into
source code and to ensure that individually each function is working correctly. The
coding phase is also sometimes called t h e implementation phase, since the design is
implemented into a workable solution in this phase. Each component of the design is
implemented as a program module. The end-product of this phase is a set of program
modules that have been individually unit tested. The main objective of unit testing is to
determine the correct working of the individual modules. The specific activities carried
out during unit testing include designing test cases, testing, debugging to fix problems,
and management of test cases.

Integration and system testing

Integration of different modules is undertaken soon after they have been coded and
unit tested. During the integration and system testing phase, the different modules
are integrated in a planned manner. Various modules making up a software are
almost never integrated in one shot (can you guess the reason for this?). Integration
of various modules are normally carried out incrementally over a number of steps.

During each integration step, previously planned modules are added to the partially
integrated system and the resultant system is tested. Finally, after all the modules
have been successfully integrated and tested, the full working system is obtained.
System testing is carried out on this fully working system.

System testing usually consists of three different kinds of testing activities:

 -testing: testing is the system testing performed by the development team.

 -testing: This is the system testing performed by a friendly set of customers.

 Acceptance testing: After the software has been delivered, the customer performs
system testing to determine whether to accept the delivered software or to reject it.

Maintenance

The total effort spent on maintenance of a typical software during its operation
phase is much more than that required for developing the software itself. Many
studies carried out in the past confirm this and indicate that the ratio of relative
effort of developing a typical software product and the total effort spent on its
maintenance is roughly 40:60. Maintenance is required in the following three
types of situations:

 Corrective maintenance: This type of maintenance is carried out to correct errors
that were not discovered during the product development phase.

 Perfective maintenance: This type of maintenance is carried out to improve the
performance of the system, or to enhance the functionalities of the system
based on customer’s requests.

 Adaptive maintenance: Adaptive maintenance is usually required for porting the
software to work in a new environment. For example, porting may be required
to get the software to work on a new computer platform or with a new
operating system.

Shortcomings of the classical waterfall model

The classical waterfall model is a very simple and intuitive model. However, it
suffers from several shortcomings. Let us identify some of the important
shortcomings of the classical waterfall model:

No feedback paths: In classical waterfall model, the evolution of a software from one
phase to the next is analogous to a waterfall. Just as water in a waterfall after having
flowed down cannot flow back, once a phase is complete, the activities carried out in it
and any artifacts produced in this phase are considered to be final and are closed for
any rework. This requires that all activities during a phase are flawlessly carried out.

The classical waterfall model is idealistic in the sense that it assumes that no error is
ever committed by the developers during any of the life cycle phases, and therefore,

incorporates no mechanism for error correction.

Iterative Waterfall Model

We had pointed out in the previous section that in a practical software development
project, the classical waterfall model is hard to use. We had branded the classical
waterfall model as an idealistic model. In this context, the iterative waterfall model can
be thought of as incorporating the necessary changes to the classical waterfall model to
make it usable in practical software development projects.

The feedback paths introduced by the iterative waterfall model are shown in Figure
2.3. The feedback paths allow for correcting errors committed by a programmer during
some phase, as and when these are detected in a later phase. For example, if during the
testing phase a design error is identified, then the feedback path allows the design to be
reworked and the changes to be reflected in the design documents and all other
subsequent documents. Please notice that in Figure 2.3 there is no feedback path to the
feasibility stage. This is because once a team having accepted to take up a project, does
not give up the project easily due to legal and moral reasons.

Figure 2.3: Iterative waterfa l model.

Almost every life cycle model that we discuss are iterative in nature, except the
classical waterfall model and the V-model—which are sequential in nature. In a
sequential model, once a phase is complete, no work product of that phase are changed
later.

Phase containment of errors

No matter how careful a programmer may be, he might end up committing some
mistake or other while carrying out a life cycle activity. These mistakes result in errors
(also called faults o r bugs) in the work product. It is advantageous to detect these
errors in the same phase in which they take place, since early detection of bugs reduces
the effort and time required for correcting those. For example, if a design problem i s
detected in the design phase itself, then the problem can be taken care of much more
easily than if the error is identified, say, at the end of the testing phase. In the later case,
it would be necessary not only to rework the design, but also to appropriately redo the
relevant coding as well as the testing activities, thereby incurring higher cost.

Phase overlap

Even though the strict waterfall model envisages sharp transitions to occur from
one phase to the next (see Figure 2.3), in practice the activities of different
phases overlap (as shown in Figure 2.4) due to two main reasons:

 In spite of the best effort to detect errors in the same phase in which they are
committed, some errors escape detection and are detected in a later phase.
These subsequently detected errors cause the activities of some already
completed phases to be reworked. If we consider such rework after a phase is
complete, we can say that the activities pertaining to a phase do not end at the
completion of the phase, but overlap with other phases as shown in Figure 2.4.

 time would be as shown in Figure 2.4.

Figure 2.4: Distribution of effort for various phases in the iterative waterfa l model.

Shortcomings of the iterative waterfall model

The iterative waterfall model is a simple and intuitive software development
model. It was used satisfactorily during 1970s and 1980s. However, the
characteristics of software development projects have changed drastically over
years. In the 1970s and 1960s, software development projects spanned several
years and mostly involved generic software product development. The projects
are now shorter, and involve Customised software development. Further,
software was earlier developed from scratch. Now the emphasis is on as much
reuse of code and other project artifacts as possible. Waterfall-based models
have worked satisfactorily over last many years in the past. The situation has
changed substantially now. As pointed out in the first chapter several decades
back, every software was developed from scratch. Now, not only software has
become very large and complex, very few (if at all any) software project is being
developed from scratch. The software services (customised software) are poised
to become the dominant types of projects. In the present software development
projects, use of waterfall model causes several problems. In this

Prototyping Model

The prototype model is also a popular life cycle model. The prototyping model can be
considered to be an extension of the waterfall model. This model suggests building a
working prototype of the system, before development of the actual software. A
prototype is a toy and crude implementation of a system. It has limited functional
capabilities, low reliability, o r inefficient performance as compared to the actual
software. A prototype can be built very quickly by using several shortcuts. The
shortcuts usually involve developing inefficient, inaccurate, or dummy functions. The
shortcut implementation of a function, for example, may produce the desired results
by using a table look-up rather than by performing the actual computations.
Normally the term rapid prototyping is used when software tools are used for
prototype construction. For example, tools based on fourth generation languages
(4GL) may be used to construct the prototype for the GUI parts.

Necessity of the prototyping model

The prototyping model is advantageous to use for specific types of projects. In the
following, we identify three types of projects for which the prototyping model
can be followed to advantage:

 It is advantageous to use the prototyping model for development of the
graphical user interface (GUI) part of an application. Through the use of a
prototype, it becomes easier to illustrate the input data formats, messages,
reports, and the interactive dialogs to the customer. This is a valuable
mechanism for gaining better understanding of the customers’ needs. In this
regard, the prototype model turns out to be especially useful in developing the
graphical user interface (GUI) part of a system. For the user, it becomes much
easier to form an opinion regarding what would be more suitable by
experimenting with a working user interface, rather than trying to imagine the
working of a hypothetical user interface.

 The prototyping model is especially useful when the exact technical solutions are
unclear to the development team. A prototype can help them to critically
examine the technical issues associated with product development. For
example, consider a situation where the development team has to write a
command language interpreter as part of a graphical user interface
development. Suppose none of the team members has ever written a compiler

The GUI part of a software system is almost always developed using the prototyping
model.

before. Then, this lack of familiarity with a required development technology is
a technical risk. This risk can be resolved by developing a prototype compiler
for a very small language to understand the issues associated with writing a
compiler for a command language. Once they feel confident in writing compiler
for the small language, they can use this knowledge to develop the compiler for
the command language. Often, major design decisions depend on issues such as
the response time of a hardware controller, or the efficiency of a sorting
algorithm, etc. In such circumstances, a prototype is often the best way to
resolve the technical issues.

 An important reason for developing a prototype is that it is impossible to “get it
right” the first time. As advocated by Brooks [1975], one must plan to throw
away the software in order to develop a good software later. Thus, the
prototyping model can be deployed when development of highly optimised and
efficient software is required.

From the above discussions, we can conclude the following:

Life cycle activities of prototyping model

The prototyping model of software development is graphically shown in Figure 2.6. As
shown in Figure 2.6, software is developed through two major activities—prototype
construction and iterative waterfall-based software development.

Prototype development: Prototype development starts with an initial requirements
gathering phase. A quick design is carried out and a prototype is built. The developed
prototype is submitted to the customer for evaluation. Based on the customer
feedback, the requirements are refined and the prototype is suitably modified. This
cycle of obtaining customer feedback and modifying the prototype continues till the
customer approves the prototype.

Iterative development: Once the customer approves the prototype, the actual
software is developed using the iterative waterfall approach. In spite of the
availability of a working prototype, the SRS document is usually needed to be
developed since the SRS document is invaluable for carrying out traceability analysis,
verification, and test case design during later phases. However, for GUI parts, the
requirements analysis and specification phase becomes redundant since the working
prototype that has been approved by the customer serves as an animated
requirements specification.

The prototyping model is considered to be useful for the development of not only the
GUI parts of a software, but also for a software project for which certain technical
issues are not clear to the development team.

 Figure 2.6: Prototyping model of software development.

Strengths of the prototyping model

This model is the most appropriate for projects that suffer from technical and
requirements risks. A constructed prototype helps overcome these risks.

Weaknesses of the prototyping model

The prototype model can increase the cost of development for projects that are
routine development work and do not suffer from any significant risks. Even
when a project is susceptible to risks, the prototyping model is effective only for
those projects for which the risks can be identified upfront before the
development starts. Since the prototype is constructed only at the start of the
project, the prototyping model is ineffective for risks identified later during the
development cycle. The prototyping model would not be appropriate for projects
for which the risks can only be identified after the development is underway.

Incremental Development Model

This life cycle model is sometimes referred to as the successive versions model and
sometimes as the incremental model. In this life cycle model, first a simple working
system implementing only a few basic features is built and delivered to the
customer. Over many successive iterations successive versions are implemented
and delivered to the customer until the desired system is realised. The incremental
development model has been shown in Figure 2.7.

Figure 2.7: Incremental software development.

Life cycle activities of incremental development model

In the incremental life cycle model, the requirements of the software are first
broken down into several modules or features that can be incrementally
constructed and delivered. This has been pictorially depicted i n Figure 2.7. At any
time, plan is made only for the next increment and no long-term plans a re made.
Therefore, it becomes easier to accommodate change requests from the
customers.The development team first undertakes to develop the core features of
the system. The core or basic features are those that do not need to invoke any
services from the other features. On the other hand, non-core features need services
from the core features. Once the initial core features are developed, these are
refined into increasing levels of capability by adding new functionalities in
successive versions. Each incremental version is usually developed using an
iterative waterfall model of development. The incremental model is schematically
shown in Figure 2.8. As each successive version of the software is constructed and
delivered to the customer, the customer feedback is obtained on the delivered
version and these feedbacks are incorporated in the next version. Each delivered
version of the software incorporates additional features over the previous version
and also refines the features that were already delivered to the customer.

The incremental model has schematically been shown in Figure 2.8. After the
requirements gathering and specification, the requirements are split into several
versions. Starting with the core (version 1), in each successive increment, the next
version is constructed using an iterative waterfall model of development and
deployed at the customer site. After the last (shown as version n) has been developed
and deployed at the client site, the full software is deployed.

Figure 2.8: Incremental model of software development.

Evolutionary Model

This model has many of the features of the incremental model. As in case of the
incremental model, the software is developed over a number of increments. At each
increment, a concept (feature) is implemented and is deployed at the client site. The
software is iterations begin. Such evolution is consistent with the pattern of
unpredictable feature discovery and feature changes that take place in new product
development.
Though the evolutionary model can also be viewed as an extension of the waterfall
model, but it incorporates a major paradigm shift that has been widely adopted in
many recent life cycle models. Due to obvious reasons, the evolutionary software
development process is sometimes referred to as design a little, build a little, test a
little, deploy a little model. This means that after the requirements have been
specified, the design, build, test, and deployment activities are iterated. A schematic
representation of the evolutionary model of development has been shown in Figure
2.9.

Advantages

The evolutionary model of development has several advantages. Two important
advantages of using this model are the following:

 Effective elicitation of actual customer requirements: In this model, the user gets a
chance to experiment with a partially developed software much before the complete
requirements are developed. Therefore, the evolutionary model helps to accurately
elicit user requirements with the help of feedback obtained on the delivery of different
versions of the software. As a result, the change requests after delivery of the complete
software gets substantially reduced.

 Easy handling change requests: In this model, handling change requests is easier as no
long term plans are made. Consequently, reworks required due to change requests are
normally much smaller compared to the sequential models.

Disadvantages

The main disadvantages of the successive versions model are as follows:

 Feature division into incremental parts can be non-trivial: For many
development projects, especially for small-sized projects, it is difficult to divide
the required features into several parts that can be incrementally implemented
and delivered. Further, even for larger problems, often the features are so
interwined and dependent on each other that even an expert would need

considerable effort to plan the incremental deliveries.

 Ad hoc design: Since at a time design for only the current increment is done, the
design can become ad hoc without specific attention being paid to maintainability
and optimality. Obviously, for moderate sized problems and for those for which
the customer requirements are clear, the iterative waterfall model can yield a
better solution.

successively refined and feature-enriched until the full software is realised. The
principal idea behind the evolutionary life cycle model is conveyed by its name. In the
incremental development model, complete requirements are first developed and the
SRS document prepared. In contrast, in the evolutionary model, the requirements, plan,
estimates, and solution evolve over the iterations, rather than fully defined and frozen
in a major up-front specification effort before the development

 Figure 2.9: Evolutionary model of software development

Applicability of the evolutionary model

The evolutionary model is normally useful for very large products, where it is easier t o
find modules for incremental implementation. Often evolutionary model is used when
the customer prefers to receive the product in increments so that he can start using the
different features as and when they are delivered rather than waiting all the time for

the full product to be developed and delivered. Another important category of projects
for which the evolutionary model is suitable, is projects using object-oriented
development.

Evolutionary model is appropriate for object-oriented development project, since it
is easy to partition the software into stand alone units in terms of the classes. Also,
classes are more or less self contained units that can be developed independently.

RAPID APPLICATION DEVELOPMENT (RAD)

The rapid application development (RAD) model was proposed in the early nineties
in an attempt to overcome the rigidity of the waterfall model (and its derivatives)
that makes it difficult to accommodate any change requests from the customer. It
proposed a few radical extensions to the waterfall model. This model has the
features of both prototyping and evolutionary models. It deploys an evolutionary
delivery model to obtain and incorporate the customer feedbacks on incrementally
delivered versions.

In this model prototypes are constructed, and incrementally the features are
developed and delivered to the customer. But unlike the prototyping model, the
prototypes are not thrown away but are enhanced and used in the software
construction

The major goals of the RAD model are as follows:

 To decrease the time taken and the cost incurred to develop software systems.
 To limit the costs of accommodating change requests.
 T o reduce the communication gap between the customer and the developers.

Main motivation

In the iterative waterfall model, the customer requirements need to be gathered,
analysed, documented, and signed off upfront, before any development could start.
However, often clients do not know what they exactly wanted until they saw a
working system. It has now become well accepted among the practitioners that
only through the process commenting on an installed application that the exact
requirements can be brought out. But in the iterative waterfall model, the
customers do not get to see the software, until the development is complete in all
respects and the software has been delivered and installed. Naturally, the
delivered software often does not meet the customer expectations and many
change request are generated by the customer. The changes are incorporated
through subsequent maintenance efforts. This made the cost of accommodating
the changes extremely high and it usually took a long time to have a good solution

The evolutionary model is well-suited to use in object-oriented software development

projects.

in place that could reasonably meet the requirements of the customers. The RAD
model tries to overcome this problem by inviting and incorporating customer
feedback on successively developed and refined prototypes.

Working of RAD

In the RAD model, development takes place in a series of short cycles or iterations. At
any time, the development team focuses on the present iteration only, and therefore
plans are made for one increment at a time. The time planned for each iteration is
called a time box. Each iteration is planned to enhance the implemented functionality
of the application by only a small amount. During each time box, a quick-and-dirty
prototype-style software for some functionality is developed. The customer evaluates
the prototype and gives feedback on the specific improvements that may be necessary.
The prototype is refined based on the customer feedback. Please note that the
prototype is not meant to be released to the customer for regular use though.

The development team almost always includes a customer representative to clarify the
requirements. This is intended to make the system tuned to the exact customer
requirements and also to bridge the communication gap between the customer and
the development team. The development team usually consists of about five to six
members, including a customer representative.

How does RAD facilitate accommodation of change requests?

 The customers usually suggest changes to a specific feature only after they have used
it. Since the features are delivered in small increments, the customers are able to give
their change requests pertaining to a feature already delivered. Incorporation of such
change requests just after the delivery of an incremental feature saves cost as this is
carried out before large investments have been made in development and testing of a
large number of features.

 How does RAD facilitate faster development?

 The decrease in development time and cost, and at the same time an increased
flexibility to incorporate changes are achieved in the RAD model in two main
ways—minimal use of planning and heavy reuse of any existing code through
rapid prototyping. The lack of long-term and detailed planning gives the
flexibility to accommodate later requirements changes. Reuse of existing code
has been adopted as an important mechanism of reducing the development
cost.

 RAD model emphasizes code reuse as an important means for completing a
project faster. In fact, the adopters of the RAD model were the earliest to
embrace object-oriented languages and practices. Further, RAD advocates use
of specialized tools to facilitate fast creation of working prototypes. These
specialized tools usually support the following features:

 Visual style of
development. Use of
reusable components.

 Applicability of RAD Model

 The following are some of the characteristics of an application that indicate its
suitability to RAD style of development:

 Customised software: As already pointed out a customised software is
developed for one or two customers only by adapting an existing software. In
customised software development projects, substantial reuse is usually made
of code from pre-existing software. For example, a company might have
developed a software for automating the data processing activities at one or
more educational institutes. When any other institute requests for an
automation package to be developed, typically only a few aspects needs to be
tailored—since among different educational institutes, most of the data
processing activities such as student registration, grading, fee collection, estate
management, accounting, maintenance of staff service records etc. are similar
to a large extent. Projects involving such tailoring can be carried out speedily
and cost- effectively using the RAD model.

 Non-critical software: The RAD model suggests that a quick and dirty
software should first be developed and later this should be refined into the
final software for delivery. Therefore, the developed product is usually far
from being optimal in performance and reliability. In this regard, for well
understood development projects and where the scope of reuse is rather
restricted, the Iterative waterfall model may provide a better solution.

 Highly constrained pro ject schedule: RAD aims to reduce development time
at the expense of good documentation, performance, and reliability. Naturally,
for projects with very aggressive time schedules, RAD model should be
preferred.

 Large software: Only for software supporting many features (large software)
can incremental development and delivery be meaningfully carried out.

 Application characteristics that render RAD unsuitable
 The RAD style of development is not advisable if a development project has
one or more of the following characteristics:

 Generic products (wide distribution): As we have already pointed out in
Chapter 1, software products are generic in nature and usually have wide
distribution. For such systems, optimal performance and reliability are
imperative in a competitive market. As it has already been discussed, the RAD
model of development may not yield systems having optimal performance and
reliability.

 Requirement of optimal performance and/or reliability: For certain
categories of products, optimal performance or reliability is required.

Examples of such systems include an operating system (high reliability
required) and a flight simulator software (high performance required). If such
systems are to be developed using the RAD model, the desired product
performance and reliability may not be realised.

 Lack of similar products: If a company has not developed similar

software, then it would hardly be able to reuse much of the existing artifacts. In
the absence of sufficient plug-in components, it becomes difficult to develop
rapid prototypes through reuse, and use of RAD model becomes meaningless.

 Monolithic entity: For certain software, especially small-sized software, it may be
hard to divide the required features into parts that can be incrementally
developed and delivered. In this case, it becomes difficult to develop a software
incrementally.

AGILE DEVELOPMENT MODELS

As already pointed out, though the iterative waterfall model has been very popular
during the 1970s and 1980s, developers face several problems while using it on
present day software projects. The main difficulties included handling change requests
from customers during product development, and the unreasonably high cost and time
that is incurred while developing customised applications. Capers Jones carried out
research involving 800 real- life software development projects, and concluded that on
the average 40 per cent of the requirements is arrived after the development has
already begun. In this context, over the last two decade or so, several life cycle models
have been proposed to overcome the important shortcomings o f the waterfall- based
models that become conspicuous when used in modern software development projects.

In the following, a few reasons why the waterfall-based development was becoming
difficult to use in project in recent times:

 In the traditional iterative waterfall-based software development models, the
requirements for the system are determined at the start of a development
project and are assumed to be fixed from that point on. Later changes to the
requirements after the SRS document has been completed are discouraged. If at

Over the last two decades or so, projects using iterative waterfall-based life cycle
models are becoming rare due to the rapid shift in the characteristics of the software
development projects over time. Two changes that are becoming noticeable are rapid
shift from development of software products to development of customised software
and the increased emphasis and scope for reuse.

all any later requirement changes becomes unavoidable, then the cost of
accommodating it becomes prohibitively high. On the other hand, accumulated
experience indicates that customers frequently change their requirements
during the development period due to a variety of reasons.

 As pointed out in Chapter 1, over the last two decades or so, customized
applications (services) has become common place and the sales revenue
generated worldwide from services already exceeds that of the software
products. Clearly, iterative waterfall model is not suitable for development of
such software. Since customization essentially involves reusing most of the
parts of an existing application and consists of only carrying out minor
modifications by writing minimal amounts of code. For such development
projects, the need for more appropriate development models was deeply felt,
and many researchers started to investigate in this direction.

 Waterfall model is called a heavy weight model, since there is too much emphasis
on producing documentation and usage of tools. This is often a source of
inefficiency and causes the project completion time to be much longer in
comparison to the customer expectations.

 Waterfall model prescribes almost no customer interactions after the
requirements have been specified. In fact, in the waterfall model of software
development, customer interactions are largely confined to the project initiation
and project completion stages.

The agile software development model was proposed in the mid-1990s to overcome
the serious shortcomings of the waterfall model of development identified above.
The agile model was primarily designed to help a project to adapt to change requests
quickly.1Thus, a major aim of the agile models is to facilitate quick project
completion. But, how is agility achieved in these models? Agility is achieved by fitting
the process to the project, i.e. removing activities that may not be necessary for a
specific project. Also, anything that that wastes time and effort is avoided.

Please note that agile model is being used as an umbrella term to refer to a group
of development processes. These processes share certain common characteristics,
but do have certain subtle differences among themselves. A few popular agile SDLC
models are the following:

 Crystal
 Atern (formerly DSDM)
 Feature-driven development
 Scrum
 Extreme programming (XP)
 Lean development
 Unified process

In the agile model, the requirements are decomposed into many small parts that can
be SPIRAL MODEL

This model gets its name from the appearance of its diagrammatic representation
that looks like a spiral with many loops (see Figure 2.10). The exact number of loops of
the spiral is not fixed and can vary from project to project. The number of loops shown
in Figure 2.10 is just an example. Each loop of the spiral is called a phase of the
software process. The exact number of phases through which the product is developed
can be varied by the project manager depending upon the project risks. A prominent
feature of the spiral model is handling unforeseen risks that can show up much after
the project has started. In this context, please recollect that the prototyping model can
be used effectively only when the risks in a project can be identified upfront before the

development work starts. As we shall discuss, this model achieves this by incorporating
much more flexibility compared to SDLC other modelWhile the prototyping model does
provide explicit support for risk handling, the risks are assumed to have been identified
completely before the project start. This is required since the prototype is constructed
only at the start of the project. In contrast, in the spiral model prototypes are built at
the start of every phase. Each phase of the model is represented as a loop in its
diagrammatic representation. Over each loop, one or more features of the product are
elaborated and analysed and the risks at that point of time are identified and are
resolved through prototyping. Based on this, the identified features are implemented.
Figure 2.10: Spiral model of software development s

SPIRAL MODEL-

.

Risk handling in spiral model

A risk is essentially any adverse circumstance that might hamper the successful
completion of a software project. As an example, consider a project for which a
risk can be that data access from a remote database might be too slow to be
acceptable by the customer. This risk can be resolved by building a prototype of
the data access subsystem and experimenting with the exact access rate. If the
data access rate is too slow, possibly a caching scheme can be implemented or a
fastercommunication scheme can be deployed to overcome the slow data access
rate. Such risk resolutions are easier done by using a prototype as the pros and
cons of an alternate solution scheme can evaluated faster and inexpensively, as
compared to experimenting using the actual software application being
developed. The spiral model supports coping up with risks by providing the
scope to build a prototype at every phase of software development.

communication scheme can be deployed to overcome the slow data access rate.
Such risk resolutions are easier done by using a prototype as the pros and cons
of an alternate solution scheme can evaluated faster and inexpensively, as
compared to experimenting using the actual software application being
developed. The spiral model supports coping up with risks by providing the
scope to build a prototype at every phase of software development.

2.1.1 Phases of the Spiral Model
Each phase in this model is split into four sectors (or quadrants) as shown in
Figure 2.10. In the first quadrant, a few features of the software are identified to
be taken u p for immediate development based on how crucial it is to the overall
software development. With each iteration around the spiral (beginning at the
center and moving outwards), progressively more complete versions of the
software get built. In other words, implementation of the identified features forms
a phase.
Quadrant 1: The objectives are investigated, elaborated, and analysed. Based on
this, the risks involved in meeting the phase objectives are identified. In this
quadrant, alternative solutions possible for the phase under consideration are
proposed.
Quadrant 2: During the second quadrant, the alternative solutions are evaluated to
select the best possible solution. To be able to do this, the solutions are evaluated
by developing an appropriate prototype.
Quadrant 3: Activities during the third quadrant consist of developing and
verifying the next level of the software. At the end of the third quadrant, the
identified features have been implemented and the next version of the software is
available.
Quadrant 4: Activities during the fourth quadrant concern reviewing the results of
the stages traversed so far (i.e. the developed version of the software) with the
customer and planning the next iteration of the spiral.
The radius of the spiral at any point represents the cost incurred in the project so
far, and the angular dimension represents the progress made so far in the current
phase.
In the spiral model of development, the project manager dynamically determines
the number of phases as the project progresses. Therefore, in this model, the
project manager plays the crucial role of tuning the model to
specific projects.
To make the model more efficient, the different features of the software that can be
developed simultaneously through parallel cycles are identified. To keep our
discussion simple, we shall not delve into parallel cycles in the spiral model.
Advantages/pros and disadvantages/cons of the spiral model
There are a few disadvantages of the spiral model that restrict its use to a only a
few types of projects. To the developers of a project, the spiral model usually
appears as a complex model to follow, since it is risk- driven and is more
complicated phase structure than the other models we discussed. It would
therefore be counterproductive to use, unless there are knowledgeable and
experienced staff in the project. Also, it is not very suitable for use in the
development of outsourced projects, since the software risks need to be
continually assessed as it is developed.
In spite of the disadvantages of the spiral model that we pointed out, for certain

categories of projects, the advantages of the spiral model can outweigh its
disadvantages.

In this regard, it is much more powerful than the prototyping model. Prototyping
model can meaningfully be used when all the risks associated with a project are known
beforehand. All these risks are resolved by building a prototype before the actual
software development starts.

Spiral model as a meta model

As compared to the previously discussed models, the spiral model can be viewed as a
meta model, since it subsumes all the discussed models. For example, a single loop
spiral actually represents the waterfall model. The spiral model uses the approach of
the prototyping model by first building a prototype in each phase before the actual
development starts. This prototypes are used as a risk reduction mechanism. The spiral
model incorporates the systematic step- wise approach of the waterfall model. Also, the
spiral model can be considered as supporting the evolutionary model—the

iterations along the spiral can be considered as evolutionary levels through which the
complete system is built. This enables the developer to understand and resolve the
risks at each evolutionary level (i.e. iteration along the spiral).

2.2 A COMPARISON OF DIFFERENT LIFE CYCLE MODELS

The classical waterfall model can be considered as the basic model and all other life
cycle models as embellishments of this model. However, the classical waterfall model
cannot be used in practical development projects, since this model supports no
mechanism to correct the errors that are committed during any of the phases but
detected at a later phase. This problem is overcome by the iterative waterfall model
through the provision of feedback paths.
The iterative waterfall model is probably the most widely used software development
model so far. This model is simple to understand and use. However, this model is
suitable only for well-understood problems, and is not suitable for development of very
large projects and projects that suffer from large number of risks.
The prototyping model is suitable for projects for which either the user requirements
or the underlying technical aspects are not well understood, however all the risks can
be identified before the project starts. This model is especially popular for development
of the user interface part of projects.
The evolutionary approach is suitable for large problems which can be decomposed
into a set of modules for incremental development and delivery. This model is also
used widely for object-oriented development projects. Of course, this model can only
be used if incremental delivery of the system is acceptable to the customer.
The spiral model is considered a meta model and encompasses all other life cycle
models. Flexibility and risk handling are inherently built into this model. The spiral

model is suitable for development of technically challenging and large software that are
prone to several kinds of risks that are difficult to anticipate at the start of the project.
However, this model is mu ch more complex than the other models—this is probably a
factor deterring its use in ordinary projects.

 MODULE-2

Requirements Analysis and Specification
 All plan-driven life cycle models prescribe that before starting to develop a

software, the exact requirements of the customer must be understood and
documented.

 Starting development work without properly understanding and
documenting the requirements increases the number of iterative changes in the
later life cycle phases, and thereby alarmingly pushes up the development costs.

 A good requirements document not only helps to form a clear understanding
of various features required from the software, but also serves as the basis for
various activities carried out during later life cycle phases.

Overview of requirements analysis and specification:
 The requirements analysis and specification phase starts after the feasibility

study stage is complete and the project has been found to be financially viable
and technically feasible.

 The requirements analysis and specification phase ends when the
requirements specification document has been developed and reviewed.

 The requirements specification document is usually called the software
requirements specification (SRS) document.

 The goal of the requirements analysis and specification phase is to clearly
understand the customer requirements and to systematically organize the
requirements into a document called the Software Requirements Specification
(SRS) document.

Who performs requirements analysis
 Requirements analysis and specification activity is usually carried out by a

few experienced members of the development team.
 It normally requires them to spend some time at the customer site.
 The engineers who gather and analyze customer requirements and then

write the requirements specification document are known as system analysts.

Requirements analysis and specification phase mainly involves carrying
out the following two important activities:

 Requirements gathering and analysis.
 Requirements specification.

Requirements gathering and analysis:
 The complete set of requirements are almost never available in the form of a

single document from the customer.
 Complete requirements are rarely obtainable from any single customer

representative.
 We can conceptually divide the requirements gathering and analysis activity

into two separate tasks: Requirements gathering and Requirements Analysis

Requirements gathering.
 Requirements gathering is also popularly known as requirements elicitation.
 The primary objective of the requirements gathering task is to collect the

requirements from the stakeholders.
 A stakeholder is a source of the requirements and is usually a person, or a

group of persons who either directly or indirectly are concerned with the
software.

 It is very difficult to gather all the necessary information from a large
number of stakeholders and from information scattered across several pieces of
documents.

 Gathering requirements turns out to be especially challenging if there is no
working model of the software being developed.

 Important ways in which an experienced analyst gathers requirements:

● Studying existing documentation:
 The analyst usually studies all the available documents regarding the system

to be developed before visiting the customer site.
 Customers usually provide a statement of purpose (SoP) document to the

developers.
● Interview:

 Typically, there are many different categories of users of a software.
 Each category of users typically requires a different set of features from the

software.
 Therefore, it is important for the analyst to first identify the different

categories of users and then determine the requirements of each.
Refer to: Delphi method

● Task analysis:
 The users usually have a black-box view of a software and consider the

software as something that provides a set of services (functionalities).
 A service supported by software is also called a task.
 The analyst tries to identify and understand the different tasks to be

performed by the software.
 For each identified task, the analyst tries to formulate the different steps

necessary to realize the required functionality in consultation with the users.
 Scenario analysis:

 A task can have many scenarios of operation.
 The different scenarios of a task may take place when the task is invoked

under different situations. For different types of scenarios of a task, the
behavior of the software can be different.

 Form analysis:
 Form analysis is an important and effective requirements gathering activity

that is undertaken by the analyst, when the project involves automating an
existing manual system.

 In form analysis the existing forms and the formats of the notifications
produced are analyzed to determine the data input to the system and the data
that are output from the system.

Requirements analysis:
 After requirements gathering is complete, the analyst analyses the gathered

requirements to form a clear understanding of the exact customer
requirements and to weed out any problems in the gathered requirements.

 During requirements analysis, the analyst needs to identify and resolve three
main types of problems in the requirements:

Anomaly:
 An anomaly is an ambiguity in a requirement. When a requirement is

anomalous, several interpretations of that requirement are possible.
 Example: While gathering the requirements for a process control

application, the following requirement was expressed by a certain stakeholder:
“When the temperature becomes high, the heater should be switched off”.
Please note that words such as “high”, “low”, “good”, “bad” etc. are indications of
ambiguous requirements as these lack quantification and can be subjectively
interpreted.

Inconsistency:
 Two requirements are said to be inconsistent, if one of the requirements

contradicts the other.
 Example: Consider the following two requirements that were collected from

two different stakeholders in a process control application development
project.

 The furnace should be switched-off when the temperature of the furnace
rises above 500℃.

 When the temperature of the furnace rises above 500℃, the water shower
should be switched-on and the furnace should remain on.

Incompleteness:
 An incomplete set of requirements is one in which some requirements have

been overlooked. The lack of these features would be felt by the customer much
later, possibly while using the software.

 Example: In a chemical plant automation software, suppose one of the
requirements is that if the internal temperature of the reactor exceeds 200℃

 then an alarm bell must be sounded. However, on an examination of all
requirements, it was found that there is no provision for resetting the alarm
bell after the temperature has been brought down in any of the requirements.
This is clearly an incomplete requirement.

Software Requirements Specification (SRS):

● After the analyst has gathered all the required information regarding the

software to be developed, and has removed all incompleteness,

inconsistencies, and anomalies from the specification, he starts to

systematically organize the requirements in the form of an SRS document.

● The SRS document usually contains all the user requirements in a

structured though an informal form.SRS document is probably the most

important document and is the toughest to write.

● One reason for this difficulty is that the SRS document is expected to cater

to the needs of a wide variety of audience.

● A well-formulated SRS document finds a variety of usage:

○ Forms an agreement between the customers and the developers.

○ Reduces future reworks.

○ Provides a basis for estimating costs and schedules

○ Provides a baseline for validation and verification

○ Facilitates future extensions

Users of SRS document:

● Users, customers, and marketing personnel:

These stakeholders need to refer to the SRS document to ensure that the

system as described in the document will meet their needs.

● Software developers:

The software developers refer to the SRS document to make sure that

they are developing exactly what is required by the customer.

● Test engineers:

The test engineers use the SRS document to understand the

functionalities, and based on this write the test cases to validate its

working.

● User documentation writers:

The user documentation writers need to read the SRS document to

ensure that they understand the features of the product well enough to

be able to write the users’ manuals.

● Project managers:

The project managers refer to the SRS document to ensure that they can

estimate the cost of the project easily by referring to the SRS document

and that it contains all the information required to plan the project.

● Maintenance engineers:

The SRS document helps the maintenance engineers to under- stand the

functionalities supported by the system.

Characteristics of a Good SRS Document:

● IEEE Recommended Practice for Software Requirements Specifications

describes the content and qualities of a good software requirements

specification (SRS).

● Some of the identified desirable qualities of an SRS document are the
following:

○ Concise: The SRS document should be concise and at the same time

unambiguous, consistent, and complete.

○ Implementation-independent:

The SRS should be free of design and implementation decisions

unless those decisions reflect actual requirements. It should only

specify what the system should do and refrain from stating how to

do these.

○ Traceable:

It should be possible to trace a specific requirement to the design

elements that implement it and vice versa. Similarly, it should be

possible to trace a requirement to the code segments that

implement it and the test cases that test this requirement and vice

versa.

○ Modifiable:

Customers frequently change the requirements during the

software development due to a variety of reasons. Therefore, in

practice the SRS document undergoes several revisions during

software development. To cope up with the requirements changes,

the SRS document should be easily modifiable. For this, an SRS

document should be well-structured.

○ Identification of response to undesired events:

The SRS document should discuss the system responses to

various undesired events and exceptional conditions that may

arise.

○ Verifiable:

All requirements of the system as documented in the SRS

document should be verifiable. This means that it should be

possible to design test cases based on the description of the

functionality as to whether or not requirements have been met in

an implementation.

Categories of Customer requirements:

An SRS document should clearly document the following aspects of a software:

● Functional requirements

● Non-functional requirements

○ Design and implementation constraints

○ External interfaces required

○ Other non-functional requirements

● Goals of implementation.

Functional Requirements:

● The functional requirements capture the functionalities required by the

users from the system.

● Consider a software as offering a set of functions {fi} to the user.

● These functions can be considered similar to a mathematical function f : I

→ O, meaning that a function transforms an element (ii) in the input

domain (I) to a value (oi) in the output (O).

● In order to document the functional requirements of a system, it is

necessary to first learn to identify the high-level functions of the systems

by reading the informal documentation of the gathered requirements.

● Each high-level function is an instance of use of the system (use case) by

the user in some way.

● A high-level function is one using which the user can get some useful piece of
work done.

● Each high-level requirement typically involves accepting some data from

the user through a user interface, transforming it to the required response,

and then displaying the system response in proper format.

● A high-level function transforms certain input data to output data.

● Except for very simple high- level functions, a function rarely reads all its

required data in one go and rarely outputs all the results in one shot.

● A high-level function usually involves a series of interactions between the

system and one or more users.

● Functional requirements form the basis for most design and test
methodologies.

● Unless the functional requirements are properly identified and

documented, the design and testing activities cannot be carried out

satisfactorily.

● Once all the high-level functional requirements have been identified and

the requirements problems have been eliminated, these are documented.

● A function can be documented by identifying the state at which the data is

to be input to the system, its input data domain, the output data domain,

and the type of processing to be carried on the input data to obtain the

output data.

● Refer to Withdraw cash from ATM example in text book.

Non-functional Requirements:

● The non-functional requirements are non-negotiable obligations that must

be supported by the software.

● The non-functional requirements capture those requirements of the

customer that cannot be expressed as functions.

● Aspects concerning external interfaces, user interfaces, maintainability,

portability, usability, maximum number of concurrent users, timing, and

throughput.

● The non-functional requirements can be critical in the sense that any

failure by the developed software to achieve some minimum defined level

in these requirements can be considered as a failure and make the

software unacceptable by the customer.

● Design and implementation constraints:

○ Design and implementation constraints are an important category of

non-functional requirements describing any items or issues that will

limit the options available to the developers.

○ Some of the example constraints can be—corporate or regulatory

policies that need to be honored; hardware limitations; interfaces

with other applications; specific technologies, tools, and databases to

be used; specific communications protocols to be used; security

considerations etc.

● External interfaces required:

○ Examples of external interfaces are - hardware, software and

communication interfaces, user interfaces, report formats, etc.

○ To specify the user interfaces, each interface between the software

and the users must be described.

● One example of a user interface requirement of a software can be that
it should be usable by factory shop floor workers who may not even
have a high school degree Other non-functional requirements:

○ This section contains a description of non- functional requirements

that are neither design constraints nor are external interface

requirements.

○ An important example is a performance requirement such as

the number of transactions completed per unit time.

Goals of implementation:

● The ‘goals of implementation’ part of the SRS document offers some

general suggestions regarding the software to be developed.

● A goal, in contrast to the functional and nonfunctional requirements, is not

checked by the customer for conformance at the time of acceptance

testing.

● The goals of the implementation section might document issues such as

easier revisions to the system functionalities that may be required in the

future, easier support for new devices to be supported in the future,

reusability issues, etc.

Organization of the SRS Document:

● The organization of an SRS document is prescribed by the IEEE 830 standard.

● IEEE 830 standard has been intended to serve only as a guideline for

organizing a requirements specification document into sections and

allows the flexibility of tailoring it.

● Depending on the type of project being handled, some sections can be

omitted, introduced, or interchanged.

● The three basic issues that any SRS document should discuss are—

functional requirements, non-functional requirements, and guidelines for

system implementation.

● The introduction section should describe the context in which the system

is being developed, and provide an overall description of the system, and

the environmental characteristics.

Various Sections of SRS:

Introduction

● Purpose: This section should describe where the software would be

deployed and how the software would be used.

● Project scope: This section should briefly describe the overall context

within which the software is being developed.

● Environmental characteristics: This section should briefly outline the

environment (hardware and other software) with which the software

will interact.

Overall description of organization of SRS document

● Product perspective: This section needs to briefly state as to whether the

software is intended to be a replacement for a certain existing system, or it

is a new software.

Product features: This section should summarize the major ways in which
the software

● would be used.

● User classes: Various user classes that are expected to use this software

are identified and described here.

● Operating environment: This section should discuss in some detail the

hardware platform on which the software would run, the operating

system, and other application software with which the developed software

would interact.

● Design and implementation constraints: In this section, the different

constraints on the design and implementation are discussed.

● User documentation: This section should list out the types of user

documentation, such as user manuals, on-line help, and trouble-shooting

manuals that will be delivered to the customer along with the software.

IEEE format for SRS Document

External interface requirements

● User interfaces: This section should describe a high-level description of

various interfaces and various principles to be followed.

● Hardware interfaces: This section should describe the interface between

the software and the hardware components of the system.

● Software interfaces: This section should describe the connections

between this software and other specific software components, including

databases, operating systems, tools, libraries, and integrated commercial

components, etc.

● Communications interfaces: This section should describe the

requirements associated with any type of communications required by the

software, such as e-mail, web access, network server communications

protocols, etc.

Other non-functional requirements for organization of SRS document

● Performance requirements: Aspects such as number of transactions

to be completed per second should be specified here.

● Safety requirements: Those requirements that are concerned with

possible loss or damage that could result from the use of the software are

specified here.

● Security requirements: This section should specify any requirements

regarding security or privacy requirements on data used or created by the

software.

IEEE 830 GUDILINES
IEEE 830 is a recommended practice for writing Software Requirements
Specifications (SRS), focusing on clear, concise, and complete documentation to
facilitate effective communication and development. It provides guidelines for
defining what the software should do, how it should interact with other
systems, and the constraints it must operate under.

Here's a more detailed breakdown:

 Purpose:

IEEE 830 aims to harmonize the content definition for software life cycle

process results among IEEE software engineering standards and related

international standards.

 Scope:

It covers the content and qualities of a good SRS, providing guidelines for

specifying requirements for software to be developed, selecting in-house and

commercial software products, and ensuring compliance with relevant

standards.

 Key Aspects:

 Clarity and Completeness: The SRS should be unambiguous, consistent,

and complete, leaving no room for misinterpretation.

 Testability: Requirements should be written in a way that allows for

easy testing and verification.

 Structure: The SRS should be well-structured, using a table of contents,

introduction, glossary, and sections for functional, non-functional, and

interface requirements.

 Organization: The SRS should be organized in a way that facilitates easy

navigation and understanding.

 Elements of a good SRS:

 Introduction: Provides context and scope of the software.

 Functional Requirements: Describes what the software should do.

 Non-Functional Requirements: Describes how the software should

perform, such as performance, security, and usability requirements.

 Interface Requirements: Describes how the software interacts with

other systems.

 Constraints: Describes any limitations or restrictions on the software.

 Superseded by:

IEEE 830-1998 has been superseded by ISO/IEC/IEEE 29148:2011.

 Benefits of using IEEE 830:

 Improved Communication: Clear and consistent documentation

facilitates better communication between stakeholders.

 Reduced Errors: Well-defined requirements can help prevent errors

and rework during development.

 Better Testability: Testable requirements lead to more thorough testing

and higher quality software.

 Facilitates Selection of Software Products: The guidelines can be used

to select in-house and commercial software products.

COHESION AND COUPLING

We have so far discussed that effective problem decomposition is an important
characteristic of a good design. Good module decomposition is indicated through
high cohesion of the individual modules and low coupling of the modules with
each other. Let us now define what is meant by cohesion and coupling.
Cohesion is a measure of the functional strength of a module, whereas the
coupling between two modules is a measure of the degree of interaction (or
interdependence) between the two modules.
In this section, we first elaborate the concepts of cohesion and coupling.
Subsequently, we discuss the classification of cohesion and coupling.
Coupling: Intuitively, we can think of coupling as follows. Two modules are said
to be highly coupled, if either of the following two situations arise:

 If the function calls between two modules involve passing large chunks of
shared data, the modules are tightly coupled.

 If the interactions occur through some shared data, then also we say that they
are highly coupled.

If two modules either do not interact with each other at all or at best interact by
passing no data or only a few primitive data items, they are said to have low
coupling.

Cohesion: To understand cohesion, let us first understand an analogy. Suppose
you listened to a talk by some speaker. You would call the speech to be cohesive,
if all the sentences of the speech played some role in giving the talk a single and
focused theme. Now, we can extend this to a module in a design solution. When
the functions of the module co-operate with each other for performing a single
objective, then the module has good cohesion. If the functions of the module do
very different things and do not co-operate with each other to perform a single

piece of work, then the module has very poor cohesion.

Functional independence

By the term functional independence, we mean that a module performs a single
task and needs very little interaction with other modules.

Functional independence is a key to any good design primarily due to the
following advantages it offers:

Error isolation: Whenever an error exists in a module, functional independence
reduces the chances of the error propagating to the other modules. The reason
behind this is that if a module is functionally independent, its interaction with other
modules is low. Therefore, an error existing in the module is very unlikely to affect
the functioning of other modules.

Further, once a failure is detected, error isolation makes it very easy to locate the
error. On the other hand, when a module is not functionally independent, once a
failure is detected in a functionality provided by the module, the error can be
potentially in any of the large number of modules and propagated to the
functioning of the module.

Scope of reuse: Reuse of a module for the development of other applications
becomes easier. The reasons for this is as follows. A functionally independent
module performs some well-defined and precise task and the interfaces of the
module with other modules are very few and simple. A functionally independent
module can therefore be easily taken out and reused in a different program. On
the other hand, if a module interacts with several other modules or the functions of
a module perform very different tasks, then it would be difficult to reuse it. This is
especially so, if the module accesses the data (or code) internal to other modules.

Understandability: When modules are functionally independent, complexity of the
design is greatly reduced. This is because of the fact that different modules can be
understood in isolation, since the modules are independent of each other. We
have already pointed out in Section 5.2 that understandability is a major
advantage of a modular design. Besides the three we have listed here, there are
many other advantages of a modular design as well. We shall not list those here,
and leave it as an assignment to the reader to identify them.

Classification of Cohesiveness

Cohesiveness of a module is the degree to which the different functions of the
module co-operate to work towards a single objective. The different modules of a

A module that is highly cohesive and also has low coupling with other modules is said
to be functionally independent of the other modules.

design can possess different degrees of freedom. However, the different classes of
cohesion that modules can possess are depicted in Figure 5.3. The cohesiveness
increases from coincidental to functional cohesion. That is, coincidental is the worst
type of cohesion and functional is the best cohesion possible. These different
classes of cohesion are elaborated below.

Figure 5.3: Classification of cohesion.

Coincidental cohesion: A module is said to have coincidental cohesion, if it
performs a set of tasks that relate to each other very loosely, if at all. In this
case, we can say that the module contains a random collection of functions. It
is likely that the functions have been placed in the module out of pure
coincidence rather than through some thought or design. The designs made
by novice programmers often possess this category of cohesion, since they
often bundle functions to modules rather arbitrarily. An example of a
module with coincidental cohesion has been shown in Figure 5.4(a).Observe
that the different functions of the module carry out very different and
unrelated activities starting from issuing of library books to creating library
member records on one hand, and handling librarian leave request on the
other.

Figure 5.4: Examples of cohesion.

Logical cohesion: A module is said to be logically cohesive, if all elements of
the module perform similar operations, such as error handling, data input,
data output, etc. As an example of logical cohesion, consider a module that
contains a set of print functions to generate various types of output reports
such as grade sheets, salary slips, annual reports, etc.

Temporal cohesion: When a module contains functions that are related by the fact
that these functions are executed in the same time span, then the module is said to
possess temporal cohesion. As an example, consider the following situation. When a
computer is booted, several functions need to be performed. These include
initialisation of memory and devices, loading the operating system, etc. When a
single module performs all these tasks, then the module can be said to exhibit
temporal cohesion. Other examples of modules having temporal cohesion are the
following. Similarly, a module would exhibit temporal cohesion, if it comprises
functions for performing initialisation, or start-up, or shut-down of some process.

Procedural cohesion: A module is said to possess procedural cohesion, if the set
of functions of the module are executed one after the other, though these functions
may work towards entirely different purposes and operate on very different data.
Consider the activities associated with order processing in a trading house. The
functions login(), place-order(), check-order(), print- bill(), place-order-on-
vendor(), update-inventory(), and logout() all do different thing and operate
on different data. However, they are normally

executed one after the other during typical order processing by a sales clerk.

Communicational cohesion: A module is said to have communicational cohesion,
if all functions of the module refer to or update the same data structure. As an
example of procedural cohesion, consider a module named student in which the
different functions in the module such as admit Student, enter Marks, print Grade
Sheet, etc. access and manipulate data stored in an array named student Records
defined within the module.

Sequential cohesion: A module is said to possess sequential cohesion, if the
different functions of the module execute in a sequence, and the output from one
function is input to the next in the sequence. As an example consider the following
situation. In an on-line store consider that after a customer requests for some item,
it is first determined if the item is in stock. In this case, if the functions create-
order(), check-item-availability(), place- order-on-vendor() are placed in a single
module, then the module would exhibit sequential cohesion. Observe that the
function create-order() creates an order that is processed by the function check-
item-availability() (whether the items are available in the required quantities in the
inventory) is input to place-order-on-vendor().

Functional cohesion: A module is said to possess functional cohesion, if different
functions of the module co-operate to complete a single task. For example, a
module containing all the functions required to manage employees’ pay-roll
displays functional cohesion. In this case, all the functions of the module (e.g.,

compute Overtime(), compute Work Hours(), compute Deductions(), etc.) work
together to generate the pay slips of the employees. Another example of a module
possessing functional cohesion has been shown in Figure 5.4(b). In this example,
the functions issue-book(), return-book(), query-book(), and find-borrower(),
together manage all activities concerned with book lending. When a module
possesses functional cohesion, then we should be able to describe what the module
does using only one simple sentence. For example, for the module of Figure 5.4(a),
we can describe the overall responsibility of the module by saying “It manages the
book lending procedure of the library.”

A simple way to determine the cohesiveness of any given module is as follows.
First examine what do the functions of the module perform. Then, try to write
down a sentence to describe the overall work performed by the module. If you
need a compound sentence to describe the functionality of the module, then it has
sequential or communicational cohesion. If you need words such as “first”, “next”,
“after”, “then”, etc., then it possesses sequential or temporal cohesion. If it needs
words such as “initialize”, “setup”, “shut down”, etc., to define its functionality, then
it has temporal cohesion.

We can now make the following observation. A cohesive module is one in which
the functions interact among themselves heavily to achieve a single goal. As a
result, if any of these functions is removed to a different module, the coupling
would increase as the functions would now interact across two different modules.

Classification of Coupling

The coupling between two modules indicates the degree of interdependence between
them. Intuitively, if two modules interchange large amounts of data, then they are
highly interdependent or coupled. We can alternately state this concept as follows.

The interface complexity is determined based on the number of parameters and
the complexity of the parameters that are interchanged while one module invokes
the functions of the other module.

Let us now classify the different types of coupling that can exist between two
modules. Between any two interacting modules, any of the following five different
types of coupling can exist. These different types of coupling, in increasing order of
their severities have also been shown in Figure 5.5.

Figure 5.5: Classification of coupling.

Data coupling: Two modules are data coupled, if they communicate using an
elementary data item that is passed as a parameter between the two, e.g. an integer, a
float, a character, etc. This data item should be problem related and not used for
control purposes.

Stamp coupling: Two modules are stamp coupled, if they communicate using a
composite data item such as a record in PASCAL or a structure in C.

Control coupling: Control coupling exists between two modules, if data from one
module is used to direct the order of instruction execution in another. An example of
control coupling is a flag set in one module and

The degree of coupling between two modules depends on their interface complexity.

tested in another module.

Common coupling: Two modules are common coupled, if they share some global data
items.

Content coupling: Content coupling exists between two modules, if they share code.
That is, a jump from one module into the code of another module can occur. Modern
high-level programming languages such as C do not support such jumps across
modules.

The different types of coupling are shown schematically in Figure 5.5. The degree of
coupling increases from data coupling to content coupling. High coupling among
modules not only makes a design solution difficult to understand and maintain, but it
also increases development effort and also makes it very difficult to get these modules
developed independently by different team members.

LAYERED ARRANGEMENT OF MODULES

T h e control hier a r c h y represents the organisation of program components in
terms of their call relationships. Thus we can say that the control hierarchy of a design
is determined by the order in which different modules call each other. Many different
types of notations have been used to represent the control hierarchy. The most
common notation is a tree-like diagram known as a structure chart which we shall
study in some detail in Chapter 6. However, other notations such as Warnier-Orr
[1977, 1981] or Jackson diagrams [1975] may also be used. Since, Warnier-Orr and
Jackson’s notations are not widely used nowadays, we shall discuss only structure
charts in this text.

In a layered design solution, the modules are arranged into several layers based on
their call relationships. A module is allowed to call only the modules that are at a lower
layer. That is, a module should not call a module that is either at a higher layer or even
in the same layer. Figure 5.6(a) shows a layered design, whereas Figure 5.6(b) shows a
design that is not layered. Observe that the design solution shown in Figure 5.6(b), is
actually not layered since all the modules can be considered to be in the same layer. In
the following, we state the significance of a layered design and subsequently we explain
it.

An important characteristic feature of a good design solution is layering of the
modules. A layered design achieves control abstraction and is easier to understand
and debug.

In a layered design, the top-most module in the hierarchy can be considered as a
manager that only invokes the services of the lower level module to discharge its
responsibility. The modules at the intermediate layers offer services to their higher
layer by invoking the services of the lower layer modules and also by doing some work
themselves to a limited extent. The modules at the lowest layer are the worker
modules. These do not invoke services of any module and entirely carry out their
responsibilities by themselves.

Understanding a layered design is easier since to understand one module, one would
have to at best consider the modules at the lower layers (that is, the modules whose
services it invokes). Besides, in a layered design errors are isolated, since an error in
one module can affect only the higher layer modules. As a result, in case of any failure
of a module, only the modules at the lower levels need to be investigated for the
possible error. Thus, debugging time reduces significantly in a layered design. On the
other hand, if the different modules call each other arbitrarily, then this situation would
correspond to modules arranged in a single layer. Locating an error would be both
difficult and time consuming. This is because, once a failure is observed, the cause of
failure (i.e. error) can potentially be in any module, and all modules would have to be
investigated for the error. In the following, we discuss some important concepts and
terminologies associated with a layered design:

Super ordinate and subordinate modules: In a control hierarchy, a module that
controls another module is said to be super ordinate to it. Conversely, a module
controlled by another module is said to be subordinate to the controller.

Visibility: A module B is said to be visible to another module A, if A directly calls B.
Thus, only the immediately lower layer modules are said to be visible to a module.

Control abstraction: In a layered design, a module should only invoke the functions of
the modules that are in the layer immediately below it. In other words, the modules at
the higher layers, should not be visible (that is, abstracted out) to the modules at the
lower layers. This is referred to as control abstraction.

Depth and width: Depth and width of a control hierarchy provide an indication of the
number of layers and the overall span of control respectively. For the design of Figure
5.6(a), the depth is 3 and width is also 3.

Fan-out: Fan-out is a measure of the number of modules that are directly controlled by
a given module. In Figure 5.6(a), the fan-out of the module M1 is 3. A design in which
the modules have very high fan-out numbers is not a good design. The reason for this is
that a very high fan-out is an indication that the module lacks cohesion. A module
having a large fan-out (greater than 7) is likely to implement several different
functions and not just a single cohesive function.

Fan-in: Fan-in indicates the number of modules that directly invoke a given module.
High fan-in represents code reuse and is in general, desirable in a good design. In
Figure 5.6(a), the fan-in of the module M1 is 0, that of M2 is 1, and that of M5 is 2.

APPROACHES TO SOFTWARE DESIGN

There are two fundamentally different approaches to software design that are in use
today— function-oriented design, and object-oriented design. Though these two
design approaches are radically different, they are complementary rather than
competing techniques. The object- oriented approach is a relatively newer
technology and is still evolving. For development of large programs, the object-
oriented approach is becoming increasingly popular due to certain advantages that it
offers. On the other hand, function-oriented designing is a mature technology and
has a large following. Salient features of these two approaches are discussed in
subsections 5.5.1 and 5.5.2 respectively.

Function-oriented Design

The following are the salient features of the function-oriented design approach:

Top-down decomposition: A system, to start with, is viewed as a black box that
provides certain services (also known as high-level functions) to the users of the
system.

In top-down decomposition, starting at a high-level view of the system, each high-
level function is successively refined into more detailed functions.

For example, consider a function create-new-library m e m be r which
essentially creates the record for a new member, assigns a unique membership
number to him, and prints a bill towards his membership charge. This high-level
function may be refined into the following subfunctions:

• assign-membership-number

• create-member-record

• print-bill

Each of these subfunctions may be split into more detailed subfunctions and so on.

Centralised system state: The system state can be defined as the values of certain
data items that determine the response of the system to a user action or external event.
For example, the set of books (i.e. whether borrowed by different users or available for
issue) determines the state of a library automation system. Such data in procedural
programs usually have global scope and are shared by many modules.

For example, in the library management system, several functions such as the
following share data such as member-records for reference and updation:

• create-new-member

• delete-member

• update-member-record

A large number of function-oriented design approaches have been proposed in the
past. A

few of the well-established function-oriented design approaches are as following:

• Structured design by Constantine and Yourdon, [1979]

• Jackson’s structured design by Jackson [1975]

• Warnier-Orr methodology [1977, 1981]

The system state is centralised and shared among different functions.

• Step-wise refinement by Wirth [1971]

• Hatley and Pirbhai’s Methodology [1987]

Object-oriented Design

In the object-oriented design (OOD) approach, a system is viewed as being made up
of a collection of objects (i.e. entities). Each object is associated with a set of functions
that are called its methods. Each object contains its own data and is responsible for
managing it. The data internal to an object cannot be accessed directly by other
objects and only through invocation of the methods of the object. The system state is
decentralised since there is no globally shared data in the system and data is stored
in each object. For example, in a library automation software, each library member
may be a separate object with its own data and functions to operate on the stored
data. The methods defined for one object cannot directly refer to or change the data of
other objects.

 The object-oriented design paradigm makes extensive use of the principles of
abstraction and decomposition as explained below. Objects decompose a system into
functionally independent modules. Objects can also be considered as instances of
abstract data types (ADTs). The ADT concept did not originate from the object-
oriented approach. In fact, ADT concept was extensively used in the ADA
programming language introduced in the 1970s. ADT is an important concept that
forms an important pillar of object- orientation. Let us now discuss the important
concepts behind an ADT. There are, in fact, three important concepts associated with
an ADT—data abstraction, data structure, data type. We discuss these in the following
subsection:
Data abstraction: The principle of data abstraction implies that how data is exactly
stored is abstracted away. This means that any entity external to the object (that is, an
instance of an ADT) would have no knowledge about how data is exactly stored,
organised, and manipulated inside the object. The entities external to the object can
access the data internal to an object only by calling certain well-defined methods
supported by the object. Consider an ADT such as a stack. The data of a stack object
may internally be stored in an array, a linearly linked list, or a bidirectional linked list.
The external entities have no knowledge of this and can access data of a stack object
only through the supported operations such as push and pop.

Data structure: A data structure is constructed from a collection of primitive data
items. Just as a civil engineer builds a large civil engineering structure using primitive
building materials such as bricks, iron rods, and cement; a programmer can construct a
data structure as an organised collection of primitive data items such as integer,
floating point numbers, characters, etc.

Data type: A type is a programming language terminology that refers to anything that
can be instantiated. For example, int, float, char etc., are the basic data types supported
by C programming language. Thus, we can say that ADTs are user defined data types.

In object-orientation, classes are ADTs. But, what is the advantage of developing an
application using ADTs? Let us examine the three main advantages of using ADTs in
programs:

 The data of objects are encapsulated within the methods. The encapsulation
principle is also known as data hiding. The encapsulation principle requires that
data can be accessed and manipulated only through the methods supported by
the object and not directly. This localises the errors. The reason for this is as
follows. No program element is allowed to change a data, except through
invocation of one of the methods. So, any error can easily be traced to the code
segment changing the value. That is, the method that changes a data item,
making it erroneous can be easily identified.

 An ADT-based design displays high cohesion and low coupling.
Therefore, object- oriented designs are highly modular.

 Since the principle of abstraction is used, it makes the design solution easily
understandable and helps to manage complexity.

Similar objects constitute a class. In other words, each object is a member of some
class. Classes may inherit features from a super class. Conceptually, objects
communicate by message passing. Objects have their own internal data. Thus an object
may exist in different states depending the values of the internal data. In different
states, an object may behave differently. We shall elaborate these concepts in Chapter
7 and subsequently we discuss an object-oriented design methodology in Chapter 8.

O b je c t - o r i e n t e d v e r s u s function-oriented design approaches

The following are some of the important differences between the function-
oriented and object-oriented design:

 Unlike function-oriented design methods in OOD, the basic abstraction is not the
services available to the users of the system such as issue- book, display-book-
details, find-issued-books, etc., but real-world entities such as member, book, book-
register, etc. For example in OOD, an employee pay-roll software is not developed by
designing functions such as update-employee-record, get-employee-address, etc.,
but by designing objects such as employees, departments, etc. In OOD, state

information exists in the form of data distributed among several objects of the
system. In contrast, in a procedural design, the state information is available in a
centralised shared data store. For example, while developing an employee pay-roll
system, the employee data such as the names of the employees, their code numbers,
basic salaries, etc., are usually implemented as global data in a traditional
programming system; whereas in an object-oriented design, these data are
distributed among different employee objects of the system. Objects communicate by
message passing. Therefore, one object may discover the state information of
another object by sending a message to it. Of course, somewhere or other the real-
world functions must be implemented.

 Function-oriented techniques group functions together if, as a group, they
constitute a higher level function. On the other hand, object- oriented
techniques group functions together on the basis of the data they operate on.

To illustrate the differences between the object-oriented and the function- oriented
design approaches, let us consider an example—that of an automated fire-alarm
system for a large building.

Automated fire-alarm system—customer requirements

The owner of a large multi-storied building wants to have a computerised fire
alarm system designed, developed, and installed in his building. Smoke detectors
and fire alarms would be placed in each room of the building. The fire alarm system
would monitor the status of these smoke detectors. Whenever a fire condition is
reported by any of the smoke detectors, the fire alarm system should determine the
location at which the fire has been sensed and then sound the alarms

only in the neighbouring locations. The fire alarm system should also flash an alarm
message on the computer console. Fire fighting personnel would man the console
round the clock. After a fire condition has been successfully handled, the fire alarm
system should support resetting the alarms by the fire fighting personnel.

Function-oriented approach: In this approach, the different high-level functions
are first identified, and then the data structures are designed.

The functions which operate on the system state are:

interrogate_detectors(); get_detector_location();
determine_neighbour_alarm();
determine_neighbour_sprinkler(); ring_alarm();
activate_sprinkler(); reset_alarm();
reset_sprinkler(); report_fire_location();

Object-oriented approach: In the object-oriented approach, the different classes of
objects are identified. Subsequently, the methods and data for each object are
identified. Finally, an appropriate number of instances of each class is created.

class detector
attributes: status, location, neighbours operations: create, sense-status, get-
location,

find-neighbours

class alarm

attributes: location, status

operations: create, ring-alarm, get_location, reset- alarm

class sprinkler

attributes: location, status
operations: create, activate-sprinkler, get_location, reset-sprinkler

We can now compare the function-oriented and the object-oriented
approaches based on the two examples discussed above, and easily observe the
following main differences:

 In a function-oriented program, the system state (data) is centralised and
several functions access and modify this central data. In case of an object-
oriented program, the state information (data) is distributed among various
objects.

 In the object-oriented design, data is private in different objects and these are
not available to the other objects for direct access and modification.

 The basic unit of designing an object-oriented program is objects, whereas it is
functions and modules in procedural designing. Objects appear as nouns in the
problem description; whereas functions appear as verbs.

At this point, we must emphasise that it is not necessary that an object- oriented
design be implemented by using an object-oriented language only. However, an object-
oriented language such as C++ and Java support the definition of all the basic
mechanisms of class, inheritance, objects, methods, etc. and also support all key object-
oriented concepts that we have just discussed. Thus, an object-oriented language
facilitates the implementation of an OOD. However, an OOD can as well be
implemented using a conventional procedural languages—though it may require more
effort to implement an OOD using a procedural language as compared to the effort
required for implementing the same design using an object-oriented language. In fact,
the older C++ compilers were essentially pre-processors that translated C++ code into
C code.

Even though object-oriented and function-oriented techniques are remarkably
different approaches to software design, yet one does not replace the other; but they
complement each other in some sense. For example, usually one applies the top-down
function oriented techniques to design the internal methods of a class, once the classes
are identified. In this case, though outwardly the system appears to have been
developed in an object- oriented fashion, but inside each class there may be a
small hierarchy of

functions designed in a top-down manner.

Data Flow Diagrams (DFDs)

The DFD (also known as the bubble chart) is a simple graphical formalism that can be
used to represent a system in terms of the input data to the system, various processing
carried out on those data, and the output data generated by the system. The main
reason why the DFD technique is so popular is probably because of the fact that DFD is
a very simple formalism— it is simple to understand and use. A DFD model uses a very
limited number of primitive symbols (shown in Figure 6.2) to represent the functions
performed by a system and the data flow among these functions.

Starting with a set of high-level functions that a system performs, a DFD model
represents the subfunctions performed by the functions using a hierarchy of diagrams.
We had pointed out while discussing the principle of abstraction in Section 1.3.2
that any hierarchical representation is an effective means to tackle complexity.
Human mind is such that it can easily understand any hierarchical model of a
system—because in a hierarchical model, starting with a very abstract model of a
system, various details of the system are slowly introduced through different levels of
the hierarchy. The DFD technique is also based on a very simple set of intuitive
concepts and rules. We now elaborate the different concepts associated with
building a DFD model of a system.

Primitive symbols used for constructing DFDs

There are essentially five different types of symbols used for constructing DFDs. These
primitive symbols are depicted in Figure 6.2. The meaning of these symbols are
explained as follows:

Figure 6.2: Symbols used for designing DFDs.

Function symbol: A function is represented using a circle. This symbol is called a
process or a bubble. Bubbles are annotated with the names of the corresponding
functions (see Figure 6.3).

External entity symbol: An external entity such as a librarian, a library member, etc.

is represented by a rectangle. The external entities are essentially those physical
entities external to the software system which interact with the system by inputting
data to the system or by consuming the data produced by the system. In addition to the
human users, the external entity symbols can be used to represent external hardware
and software such as another application software that would interact with the
software being modelled.

Data flow symbol: A directed arc (or an arrow) is used as a data flow symbol. A data
flow symbol represents the data flow occurring between two processes or between an
external entity and a process in the direction of the data flow arrow. Data flow symbols
are usually annotated with the corresponding data names. For example the DFD in
Figure 6.3(a) shows three data flows—the data item number flowing from the process
read-number to validate-number, data- item flowing into read-number, and valid-
number flowing out of validate-number.

Data store symbol: A data store is represented using two parallel lines. It represents a
logical file. That is, a data store symbol can represent either a data structure or a
physical file on disk. Each data store is connected to a process by means of a data flow
symbol. The direction of the data flow arrow shows whether data is being read from or
written into a data store. An arrow flowing in or out of a data store implicitly
represents the entire data of the data store and hence arrows connecting t o a data
store need not be annotated with the name of the corresponding data items. As an
example of a data store, number is a data store in Figure 6.3(b).

Output symbol: The output symbol i s as shown in Figure 6.2. The output symbol is
used when a hard copy is produced.

The notations that we are following in this text are closer to the Yourdon’s
notations than to the other notations. You may sometimes find notations in other books
that are slightly different than those discussed here. For example, the data store may
look like a box with one end open. That is because, they may be following notations
such as those of Gane and Sarson [1979].

Important concepts associated with constructing DFD models

Before we discuss how to construct the DFD model of a system, let us discuss
some important concepts associated with DFDs:

Synchronous and asynchronous operations

If two bubbles are directly connected by a data flow arrow, then they are
synchronous. This means that they operate at t he same speed. An example of such
an arrangement is shown in Figure 6.3(a). Here, the validate-number bubble can
start processing only after t h e read- number bubble has supplied data to it; and
the read-number bubble has to wait until the validate-number bubble has
consumed its data.

However, if two bubbles are connected through a data store, as in Figure 6.3(b) then
the speed of operation of the bubbles are independent. This statement can be
explained using the following reasoning. The data produced by a producer bubble
gets stored in the data store. It is therefore possible that the producer bubble stores
several pieces of data items, even before the consumer bubble consumes any of
them.

Figure 6.3: Synchronous and asynchronous data flow.

Data dictionary

Every DFD model of a system must be accompanied by a data dictionary. A data
dictionary lists all data items that appear in a DFD model. The data items listed
include all data flows and the contents of all data stores appearing on all the DFDs
in a DFD model. Please remember that the DFD model of a system typically consists of
several DFDs, viz., level 0 DFD, level 1 DFD, level 2 DFDs, etc., as shown in Figure 6.4
discussed in new subsection. However, a single data dictionary should capture all the
data appearing in all the DFDs constituting the DFD model of a system.

For example, a data dictionary entry may represent that the data grossPay consists
of the components regularPay and overtimePay.

grossP ay = regularP ay + overtimeP ay

For the smallest units of data items, the data dictionary simply lists their name

A data dictionary lists the purpose of all data items and the definition of all composite
data items in terms of their component data items.

and their type. Composite data items are expressed in terms of the component
data items using certain operators. The operators using which a composite data
item can be expressed in terms of its component data items are discussed
subsequently.

The dictionary plays a very important role in any software development process,
especially for the following reasons:

 A data dictionary provides a standard terminology for all relevant data for use by
the developers working in a project. A consistent vocabulary for data items is
very important, since in large projects different developers of the project have a
tendency to use different terms to refer to the same data, which unnecessarily
causes confusion.

 The data dictionary helps the developers to determine the definition of different
data structures in terms of their component elements while implementing the
design.

 The data dictionary helps to perform impact analysis. That is, it is possible to
determine the effect of some data on various processing activities and vice versa.
Such impact analysis is especially useful when one wants to check the impact of
changing an input value type, or a bug in some functionality, etc.

 For large systems, the data dictionary can become extremely complex and
voluminous. Even moderate-sized projects can have thousands of entries in the
data dictionary. It becomes extremely di fficult to maintain a voluminous
dictionary manually. Computer-aided software engineering (CASE) tools come
handy to overcome this problem. Most CASE tools usually capture the data items
appearing in a DFD as the DFD is drawn, and automatically generate the data
dictionary. As a result, the designers do not have to spend almost any effort in
creating the data dictionary. These CASE tools also support some query language
facility to query about the definition and usage of data items. For example,
queries may be formulated to determine which data item affects which
processes, or a process affects which data items, or the definition and usage of
specific data items, etc. Query handling is facilitated by storing the data
dictionary in a relational database management system (RDBMS).

 Data definition

 Composite data items can be defined in terms of primitive data items using the
following data definition operators.

 +: denotes composition of two data items, e.g. a+b represents data a and b. [,,]:
represents selection, i.e. any one of the data items listed inside the

 square bracket can occur For example, [a,b] represents either a occurs or b

 occurs.

 (): the contents inside the bracket represent optional data which may or may not

appear.
 a+(b) represents either a or a+b occurs.

 {}: represents iterative data definition, e.g. {name}5 represents five name data.

 {name}* represents zero or more instances of name data.

 =: represents equivalence, e.g. a=b+c means that a is a composite data item

comprising of both b and c.

/* */: Anything appearing within /* and */ is considered as comment.

6.1 DEVELOPING THE DFD MODEL OF A SYSTEM

A DFD model of a system graphically represents how each input data is
transformed to its corresponding output data through a hierarchy of DFDs.

The DFD model of a system i s constructed by using a hierarchy of DFDs (see Figure
6.4). The top level DFD is called the level 0 DFD or the context diagram. This is the
most abstract (simplest) representation of the system (highest level). It is the easiest
to draw and understand. At each successive lower level DFDs, more and more details
are gradually introduced. To develop a higher-level DFD model, processes are
decomposed into their sub processes and the data flow among these sub processes
are identified.

To develop the data flow model of a system, first the most abstract representation
(highest level) of the problem is to be worked out. Subsequently, the lower level
DFDs are developed. Level 0 and Level 1 consist of only one DFD each. Level 2 may
contain up to 7 separate DFDs, and level 3 up to 49 DFDs, and so on. However, there
is only a single data dictionary for the entire DFD model. All the data names appearing
in all DFDs are populated in the data dictionary and the data dictionary contains the
definitions of all the data items.

Context Diagram

The context diagram is the most abstract (highest level) data flow representation of
a system. It represents the entire system as a single bubble. The bubble in the
context diagram is annotated with the name of the software system being
developed (usually a noun). This is the only bubble in a DFD model, where a noun
is used for naming the bubble. The bubbles at all other levels are annotated with
verbs according to the main function performed by the bubble. This is expected
since the purpose of the context diagram is to capture the context of the system
rather than its functionality. As an example of a context diagram, consider the
context diagram a software developed to automate the book keeping activities of a
supermarket (see Figure 6.10). The context diagram has been labelled as

The DFD model of a problem consists of many of DFDs and a single data dictionary.

‘Supermarket software’

Figure 6.4: DFD model of a system consists of a hierarchy of DFDs and a single
data dictionary.

The name context diagram of the level 0 DFD is justified because it represents the
context in which the system would exist; that is, the external entities who would
interact with the system and the specific data items that they would be supplying the
system and the data items they would be receiving from the system. The various
external entities with which the system interacts and the data flow occurring between

The context diagram establishes the context in which the system operates; that is,
who are the users, what data do they input to the system, and what data they
received by the system.

the system and the external entities are represented. The data input to the system and
the data output from the system are represented as incoming and outgoing arrows.
These data flow arrows should be annotated with the corresponding data names.

To develop the context diagram of the system, we have to analyse the SRS
document to identify the different types o f users who would be using the system and
the kinds of data they would be inputting to the system and the data they would be
receiving from the system. Here, the term users of the system also includes any
external systems which supply data to or receive data from the system.

Level 1 DFD

The level 1 DFD usually contains three to seven bubbles. That is, the system is
represented as performing three to seven important functions. To develop the level 1
DFD, examine the high-level functional requirements in the SRS document. If there
are three to seven high- level functional requirements, then each of these can be
directly represented as a bubble in the level 1 DFD. Next, examine the input data to
these functions and the data output by these functions as documented in the SRS
document and represent them appropriately in the diagram.

What if a system has more than seven high-level requirements identified in the SRS
document? In this case, some of the related requirements have to be combined and
represented as a single bubble in the level 1 DFD. These can be split appropriately
in the lower DFD levels. If a system has less than three high-level functional
requirements, then some of the high-level requirements need to be split into their sub
functions so that we have roughly about five to seven bubbles represented on the
diagram. We illustrate construction of level 1 DFDs in Examples 6.1 to 6.4.

Decomposition

Each bubble in the DFD represents a function performed by the system. The bubbles
are decomposed into sub functions at the successive levels of the DFD model.
Decomposition of a bubble is also known as factoring o r exploding a bubble. Each
bubble at any level of DFD is usually decomposed to anything three to seven bubbles.
A few bubbles at any level m a k e that level superfluous. For example, if a bubble is
decomposed to just one bubble or two bubbles, then this decomposition becomes
trivial and redundant. On the other hand, too many bubbles (i.e. more than seven
bubbles) at any level o f a DFD makes the DFD model hard to understand.
Decomposition of a bubble should be carried

on until a level is reached at which the function of the bubble can be described
using a simple algorithm.

We can now describe how to go about developing the DFD model of a system
more systematically.

1. Construction of context diagram: Examine the SRS document to
determine:
• Different high-level functions that the system needs to perform.

• Data input to every high-level function.

• Data output from every high-level function.

• Interactions (data flow) among the identified high-level functions. Represent
these aspects of the high-level functions in a diagrammatic form. This would
form the top-level data flow diagram (DFD), usually
called the DFD 0.

Construction of level 1 diagram: Examine the high-level functions described in
the SRS document. If there are three to seven high-level requirements in the SRS
document, then represent each of the high-level function in the form of a bubble.
If there are more than seven bubbles, then some of them have to be combined. If
there are less than three bubbles, then some of these have to be split.

Construction of lower-level diagrams: Decompose each high-level function into
its constituent subfunctions through the following set of activities:

• Identify the different subfunctions of the high-level function.

• Identify the data input to each of these subfunctions.

• Identify the data output from each of these subfunctions.

• Identify the interactions (data flow) among these subfunctions. Represent
these aspects in a diagrammatic form using a DFD. Recursively repeat Step 3 for
each subfunction until a subfunction can be
represented by using a simple algorithm.

Numbering of bubbles

It is necessary to number the different bubbles occurring in the DFD. These numbers
help in uniquely identifying any bubble in the DFD from its bubble number. The
bubble at the context level is usually assigned the number 0 to indicate that it is the
0 level DFD. Bubbles at level 1 are numbered, 0.1, 0.2, 0.3, etc. When a bubble
numbered x is decomposed, its children bubble are numbered x.1, x.2, x.3, etc. In
this numbering scheme, by looking at the number of a bubble we can
unambiguously determine its level, its ancestors, and its successors.

Balancing DFDs

The DFD model of a system usually consists of many DFDs that are organised in a
hierarchy. In this context, a DFD is required to be balanced with respect to the
corresponding bubble of the parent DFD.

We illustrate the concept of balancing a DFD in Figure 6.5. In the level 1 DFD, data
items d1 and d3 flow out of the bubble 0.1 and the data item d2 flows into the bubble
0.1 (shown by the dotted circle). In the next level, bubble 0.1 is decomposed into
three DFDs (0.1.1,0.1.2,0.1.3). The decomposition is balanced, as d1 and d3 flow out
of the level 2 diagram and d 2 flows in. Please note that dangling arrows (d1,d2,d3)
represent the data flows into or out of a diagram.

How far to decompose?

A bubble should not be decomposed any further once a bubble is found to represent
a simple set of instructions. For simple problems, decomposition up to level 1 should
suffice. However, large industry standard problems may need decomposition up to
level 3 or level 4. Rarely, if ever, decomposition beyond level 4 is needed.

The data that flow into or out of a bubble must match the data flow at the next level
of DFD. This is known as balancing a DFD.

Figure 6.5: An example showing balanced decomposition.

Commonly made errors while constructing a DFD model

Although DFDs are simple to understand and draw, students and practitioners
alike encounter similar types of problems while modelling software problems
using DFDs. While learning from experience is a powerful thing, it is an
expensive pedagogical technique in the business world. It is therefore useful to
understand the different types of mistakes that beginners usually make while
constructing the DFD model

of systems, so that you can consciously try to avoid them.The errors are as
follows:

 Many beginners commit the mistake of drawing more than one bubble in the
context diagram. Context diagram should depict the system as a single bubble.

 Many beginners create DFD models in which external entities appearing at all
levels of DFDs. All external entities interacting with the system should be
represented only in the context diagram. The external entities should not
appear in the DFDs at any other level.

 It is a common oversight to have either too few or too many bubbles in a DFD.
Only three to seven bubbles per diagram should be allowed. This also means
that each bubble in a DFD should be decomposed three to seven bubbles in the
next level.

 Many beginners leave the DFDs at the different levels of a DFD model
unbalanced.

 A common mistake committed by many beginners while developing a DFD
model is attempting to represent control information in a DFD.

The following are some illustrative mistakes of trying to represent control aspects
such as:

Illustration 1. A book can be searched in the library catalog by inputting its name. If
the book is available in the library, then the details of the book are displayed. If the
book is not listed in the catalog, then an error message is generated. While developing
the DFD model for this simple problem, many beginners commit the mistake of
drawing an arrow (as shown in Figure 6.6) to indicate that the error function is
invoked after the search book. But, this is a control information and should not be
shown on the DFD.

It is important to realise that a DFD represents only data flow, and it does not
represent any control information.

Figure 6.6: It is incorrect to show control information on a DFD.

Illustration 2. Another type of error occurs when one tries to represent when or
in what order different functions (processes) are invoked. A DFD similarly
should not represent the conditions under which different functions are invoked.

Illustration 3. If a bubble A invokes either the bubble B or the bubble C depending
upon some conditions, we need only to represent the data that flows between bubbles
A and B or bubbles A and C and not the conditions depending on which the two
modules are invoked.

 A data flow arrow should not connect two data stores or even a data store with
an external entity. Thus, data cannot flow from a data store to another data
store or to an external entity without any intervening processing. As a result, a
data store should be connected only to bubbles through data flow arrows.

 All the functionalities of the system must be captured by the DFD model. No
function of the system specified in the SRS document of the system should be
overlooked.

 Only those functions of the system specified in the SRS document should be
represented. That is, the designer should not assume functionality of the system
not specified by the SRS document and then try to represent them in the DFD.

 Incomplete data dictionary and data dictionary showing incorrect composition
of data items are other frequently committed mistakes.

 The data and function names must be intuitive. Some students and even
practicing developers use meaningless symbolic data names such as a,b,c, etc.
Such names hinder understanding the DFD model.

 Novices usually clutter their DFDs with too many data flow arrow. It becomes
difficult to understand a DFD if any bubble is associated with more than seven
data flows. When there are too many data flowing in or out of a DFD, it is better
to combine these data items into a high- level data item. Figure 6.7 shows an
example concerning how a DFD can be simplified by combining several data
flows into a single high- level data flow.

Figure 6.7: Illustration of how to avoid data cluttering.

We now illustrate the structured analysis technique through a few examples.

Example 6.1 (RMS Calculating Software) A software system called RMS calculating
software would read three integral numbers from the user in the range of –1000 and
+1000 and would determine the root mean square (RMS) of the three input numbers
and display it.

In this example, the context diagram is simple to draw. The system accepts three
integers from the user and returns the result to him. This has been shown in Figure
6.8(a). To draw the level 1 DFD, from a cursory analysis of the problem description, we
can see that there are four basic functions that the system needs to perform—accept
the input numbers from the user, validate the numbers, calculate the root mean square
of the input numbers and, then display the result. After representing these four
functions in Figure 6.8(b), we observe that the calculation of root mean square
essentially consists of the functions—calculate the squares of the input
numbers,

calculate the mean, and finally calculate the root. This decomposition is shown in
the level 2 DFD in Figure 6.8(c).

Figure 6.8: Context diagram, level 1, and level 2 DFDs for Example 6.1.

Data dictionary for the DFD model of Example 6.1

data-items: {integer}3 rms:
float
valid-data:data-items
a: integer b:
integer c:
integer asq:
integer

bsq: integer
csq: integer
msq: integer

Example 6.1 is an almost trivial example and is only meant to illustrate the basic
methodology. Now, let us perform the structured analysis for a more complex problem.

Example 6.2 (Tic-Tac-Toe Computer Game) Tic-tac-toe is a computer game in which
a human player and the computer make alternate moves on a 3 × 3 square. A move
consists of marking a previously unmarked square. The player who is first to place
three consecutive marks along a straight line (i.e., along a row, column, or diagonal) on
the square wins. As soon as either of the human player or the computer wins, a
message congratulating the winner should be displayed. If neither player manages to
get three consecutive marks along a straight line, and all the squares on the board are
filled up, then the game is drawn. The computer always tries to win a game.

The context diagram and the level 1 DFD are shown in Figure 6.9.

Data dictionary for the DFD model of Example 6.2

move: integer /* number between 1 to 9 */ display:
game+result
game: board board:
{integer}9

result: [“computer won”, “human won”, “drawn”]

Example 6.3 (Supermarket Prize Scheme) A super market needs to develop a
software that would help it to automate a scheme that it plans to introduce to
encourage regular customers. In this scheme, a customer would have first register by
supplying his/her residence address, telephone number, and the driving license
number. Each customer who registers for this scheme is assigned a unique customer
number (CN) by the computer. A customer can present his CN to the check out staff
when he makes any purchase. In this case, the value of his purchase is credited against
his CN. At the end of each year, the supermarket intends to award surprise gifts to 10
customers who make the highest total purchase over the year. Also, it intends to award
a 22 caret gold coin to every customer whose purchase exceeded Rs. 10,000. The
entries against the CN are reset on the last day of every year after the prize winners’
lists are generated.

Figure 6.9: Context diagram and level 1 DFDs for Example 6.2.

The context diagram for the supermarket prize scheme problem of Example
6.3 is shown in Figure 6.10. The level 1 DFD in Figure 6.11. The level 2 DFD in Figure
6.12.

Figure 6.10: Context diagram for Example 6.3.

Figure 6.11: Level 1 diagram for Example 6.3.

Figure 6.12: Level 2 diagram for Example 6.3.

Data dictionary for the DFD model of Example 6.3

address: name+house#+street#+city+pin sales-
details: {item+amount}* + CN
CN: integer
customer-data: {address+CN}*
sales-info: {sales-details}*
winner-list: surprise-gift-winner-list + gold-coin-winner-list
surprise-gift-winner-list: {address+CN}*
gold-coin-winner-list: {address+CN}*
gen-winner-command: command total-
sales: {CN+integer}*

Observations: The following observations can be made from the Example 6.3.

1. The fact that the customer is issued a manually prepared customer identity
card or that the customer hands over the identity card each time he makes a
purchase has not been shown in the DFD. This is because these are item
transfers occurring outside the computer.

2. The data generate-winner-list in a way represents control information

(that is, command to the software) a n d no real data. We have included it in the
DFD because it simplifies the structured design process as we shall realize
after we practise solving a few problems. We could have also as well done
without the generate-winner-list data, but this could have a bit complicated the
design.

3. Observe in Figure 6.11 that w e have two separate stores for the customer data
and sales data. Should we have combined them into a single data store? The
answer is—No, we should not. If we had combined them into a single data
store, the structured design that would be carried out based on this model
would become complicated. Customer data and sales data have very different
characteristics. For example, customer data once created, does not change. On
the other hand, the sales data changes frequently and also the sales data is
reset at the end of a year, whereas the customer data is not.

USER INTERFACE DESIGN

The user interface portion of a software product is responsible for all interactions
with the user. Almost every software product has a user interface (can you think of a
software product that does not have any user interface?). In the early days of
computer, no software product had any user interface. The computers those days
were batch systems and no interactions with the users were supported. Now, we
know that things are very different—almost every software product is highly
interactive. The user interface part of a software product is responsible for all
interactions with the end-user. Consequently, the user interface part of any software
product is of direct concern to the end-users. No wonder then that many users often
judge a software product based on its user interface. Aesthetics apart, an interface
that is difficult to use leads to higher levels of user errors and ultimately leads to user
dissatisfaction. Users become particularly irritated when a system behaves in an
unexpected ways, i.e., issued commands do not carry out actions according to the
intuitive expectations of the user. Normally, when a user starts using a system, he
builds a mental model of the system and expects the system behaviour to conform
to it. For example, if a user action causes one type of system activity and response
under some context, then the user would expect similar system activity and
response to occur for similar user actions in similar contexts. Therefore, sufficient
care and attention should be paid to the design of the user interface of any software
product.

Systematic development of the user interface is also important from another
consideration. Development of a good user interface usually takes significant portion
of the total system development effort. For many interactive applications, as much as
50 per cent of the total development effort is spent on developing the user interface
part. Unless the user interfaceis designed and developed in a systematic manner,

the total effort required to develop the interface will increase tremendously.
Therefore, it is necessary to carefully study various concepts associated with user
interface design and understand various systematic techniques available for the
development of user interface.
In this chapter, we first discuss some common terminologies and concepts

associated with development of user interfaces. Then, we classify the different types of
interfaces commonly being used. We also provide some guidelines for designing good
interfaces, and discuss some tools for development of graphical user interfaces (GUIs).
Finally, we present a GUI development methodology.

CHARACTERISTICS OF A GOOD USER INTERFACE

Before we start discussing anything about how to develop user interfaces, it is
important to identify the different characteristics that are usually desired of a good
user interface. Unless we know what exactly is expected of a good user interface, we
cannot possibly design one. In the following subsections, we identify a few important
characteristics of a good user interface:

Speed of learning: A good user interface should be easy to learn. Speed of learning is
hampered by complex syntax and semantics of the command issue procedures. A
good user interface should not require its users to memorise commands. Neither
should the user be asked to remember information from one screen to another while
performing various tasks using the interface. Besides, the following three issues are
crucial to enhance the speed of learning:

U s e of metaphors1 and intuitive command names: Speed of learning an interface
is greatly facilitated if these are based on some day- to-day real-life examples or some
physical objects with which the users are familiar with. The abstractions of real-life
objects or concepts used in user interface design are called metaphors. If the user
interface of a text editor uses concepts similar to the tools used by a writer for text
editing such as cutting lines and paragraphs and pasting it at other places, users can
immediately relate to itConsistency: Once, a user learns about a command, he should
be able to use the similar commands in different circumstances for carrying out
similar actions. This makes it easier to learn the interface since the user can extend
his knowledge about one part of the interface to the other parts. Thus, the different
commands supported by an interface should be consistent.
Component-based interface: Users can learn an interface faster if the interaction
style of the interface is very similar to the interface of other applications with which
the user is already familiar with. This can be achieved if the interfaces of different
applications are developed using some standard user interface components. This, in
fact, is the theme of the component-based user interface discussed in Section 9.5.
The speed of learning characteristic of a user interface can be determined by
measuring the training time and practice that users require before they can
effectively use the software.

Speed of use: Speed of use of a user interface is determined by the time and user
effort necessary to initiate and execute different commands. This characteristic of the
interface is some times referred to as productivity support of the interface. It
indicates how fast the users can perform their intended tasks. The time and user effort
necessary to initiate and execute different commands should be minimal. This can be
achieved through careful design of the interface. For example, an interface that requires
users to type in lengthy commands or involves mouse movements to different areas of
the screen that are wide apart for issuing commands can slow down the operating
speed of users. The most frequently used commands should have the smallest length or
be available at the top of a menu to minimise the mouse movements necessary to issue
commands.

Speed of recall: Once users learn how to use an interface, the speed with which they
can recall the command issue procedure should be maximised. This characteristic is
very important for intermittent users. Speed of recall is improved if the interface is
based on some metaphors, symbolic command issue procedures, and intuitive
command names.

Error prevention: A good user interface should minimise the scope of committing
errors while initiating different commands. The error rate of an interface can be easily
determined by monitoring the errors committed by an average users while using the
interface. This monitoring can be automated by instrumenting the user interface code
with monitoring code which can record the frequency and types of user error and
later display the statistics of various kinds of errors committed by different users.
Consistency of names, issue procedures, and behaviour of similar commands and the
simplicity of the command issue procedures minimise error possibilities. Also, the
interface should prevent the user from entering wrong values.

Aesthetic and attractive: A good user interface should be attractive to use. An
attractive user interface catches user attention and fancy. In this respect, graphics-
based user interfaces have a definite advantage over text-based interfaces.

Consistency: The commands supported by a user interface should be consistent. The
basic purpose of consistency is to allow users to generalise the knowledge about
aspects of the interface from one part to another. Thus, consistency facilitates speed of
learning, speed of recall, and also helps in reduction of error rate

Feedback: A good user interface must provide feedback to various user actions.
Especially, if any user request takes more than few seconds to process, the user should
be informed about the state of the processing of his request. In the absence of any
response from the computer for a long time, a novice user might even start
recovery/shutdown procedures in panic. If required, the user should be periodically
informed about the progress made in processing his command.

Support for multiple skill levels: A good user interface should support multiple levels
of sophistication of command issue procedure for different categories of users. This is

necessary because users with different levels of experience in using an application
prefer different types of user interfaces. Experienced users are more concerned about
the efficiency of the command issue procedure, whereas novice users pay importance to
usability aspects. Very cryptic and complex commands discourage a novice, whereas
elaborate command sequences make the command issue procedure very slow and
therefore put off experienced users. When someone uses an application for the first
time, his primary concern is speed of learning. After using an application for extended
periods of time, he becomes familiar with the operation of the software. As a user
becomes more and more familiar with an interface, his focus shifts from usability
aspects to speed of command issue aspects. Experienced users look for options such as
“hot-keys”, “macros”, etc.

BASIC CONCEPTS

In this section, we first discuss some basic concepts in user guidance and on-line help
system. Next, we examine the concept of a mode-based and a modeless interface and
the advantages of a graphical interface.

User Guidance and On-line Help

Users may seek help about the operation of the software any time while using the
software. This is provided by the on-line help system. This is different from the
guidance and error messages which are flashed automatically without the user
asking for them. The guidance messages prompt the user regarding the options he
has regarding the next command, and the status of the last command, etc.

On-line help system: Users expect the on-line help messages to be tailored to the
context in which they invoke the “help system”. Therefore, a good on- line help
system should keep track of what a user is doing while invoking the help system and
provide the output message in a context-dependent way. Also, the help messages
should be tailored to the user’s experience level. Further, a good on-line help system
should take advantage of any graphics and animation characteristics of the screen
and should not just be a copy of the user’s manual.

Guidance messages: The guidance messages should be carefully designed to prompt
the user about the next actions he might pursue, the current status of the system, the
progress so far made in processing his last command, etc. A good guidance system
should have different levels of sophistication for different categories of users. For
example, a user using a command language interface might need a different type of
guidance compared to a user using a menu or iconic interface (These different types
of interfaces are discussed later in this chapter). Also, users should have an option to
turn off the detailed messages.

Error messages: Error messages are generated by a system either when the user
commits some error or when some errors encountered by the system during
processing due to some exceptional conditions, such as out of memory, communication
link broken, etc. Users do not like error messages that are either ambiguous or too

general such as “invalid input or system error”. Error messages should be polite. Error
messages should not have associated noise which might embarrass the user. The
message should suggest how a given error can be rectified. If appropriate, the user
should be given the option of invoking the on-line help system to find out more about
the error situation.

Mode-based versus Modeless Interface

A mode is a state or collection of states in which only a subset of all user interaction
tasks can be performed. In a modeless interface, the same set of commands can be
invoked at any time during the running of the software. Thus, a modeless interface
has only a single mode and all the commands are available all the time during the
operation of the software. On the other hand, in a mode-based interface, different
sets of commands can be invoked depending on the mode in which the system is, i.e.,
the mode at any instant is determined by the sequence of commands already issued
by the user.
A mode-based interface can be represented using a state transition diagram, where
each node of the state transition diagram would represent a mode. Each state of the
state transition diagram can be annotated with the commands that are meaningful in
that state.

Graphical User Interface (GUI) versus Text-based User Interface

Let us compare various characteristics of a GUI with those of a text- based user
interface:

 In a GUI multiple windows with different information can simultaneously
be displayed on the user screen. This is perhaps one of the biggest advantages
of GUI over text- based interfaces since the user has the flexibility to
simultaneously interact with several related items at any time and can have
access to different system information displayed in different windows.

 Iconic information representation and symbolic information manipulation is
possible in a GUI. Symbolic information manipulation such as dragging an icon
representing a file to a trash for deleting is intuitively very appealing and the
user can instantly remember it.

 A GUI usually supports command selection using an attractive and user-
friendly menu selection system.

 In a GUI, a pointing device such as a mouse or a light pen can be used for issuing
commands. The use of a pointing device increases the efficacy of command issue
procedure.

 On the flip side, a GUI requires special terminals with graphics capabilities for
running and also requires special input devices such a mouse. On the other hand, a
text-based user interface can be implemented even on a cheap alphanumeric

display terminal. Graphics terminals are usually much more expensive than
alphanumeric terminals. However, display terminals with graphics capability with
bit- mapped high-resolution displays and significant amount of local processing
power have become affordable and over the years have replaced text-based
terminals on all desktops. Therefore, the emphasis of this chapter is on GUI design
rather than text-based user interface design.

TYPES OF USER INTERFACES
Broadly speaking, user interfaces can be classified into the following three categories:

 Command language-based interfaces
Menu-based interfaces
 Direct manipulation interfaces

Each of these categories of interfaces has its own characteristic advantages and
disadvantages. Therefore, most modern applications use a careful combination of all
these three types of user interfaces for implementing the user command repertoire.
It is very difficult to come up with a simple set of guidelines as to which parts of
the interface should be implemented using what type of interface. This choice is to a
large extent dependent on the experience and discretion of the designer of the
interface. However, a study of the basic characteristics and the relative advantages of
different types of interfaces would give a fair idea to the designer regarding which
commands should be supported using what type of interface. In the following three
subsections, we briefly discuss some important characteristics, advantages, and
disadvantages of using each type of user interface.
Command Language-based Interface
A command language-based interface—as the name itself suggests, is based on
designing a command language which the user can use to issue the commands. The
user is expected to frame the appropriate commands in the language and type them
appropriately whenever required. A simple command language-based interface
might simply assign unique names to the different commands. However, a more
sophisticated command language-based interface may allow users to compose
complex commands by using a set of primitive commands. Such a facility to compose
commands dramatically reduces the number of command names one would have to
remember. Thus, a command language-based interface can be made concise
requiring minimal typing by the user. Command language-based interfaces allow fast
interaction with the computer and simplify the input of complex commands.

Among the three categories of interfaces, the command language interface allows for
most efficient command issue procedure requiring minimal typing. Further, a
command language-based interface can be implemented even on cheap alphanumeric
terminals. Also, a command language-based interface is easier to develop compared to
a menu-based or a direct-manipulation interface because compiler writing techniques
are well developed. One can systematically develop a command language interface by
using the standard compiler writing tools Lex and Yacc.

However, command language-based interfaces suffer from several drawbacks. Usually,

command language-based interfaces are difficult to learn and require the user memorise
the set of primitive commands. Also, most users make errors while formulating
commands in the command language and also while typing them. Further, in a
command language-based interface, all interactions with the system is through a key-
board and cannot take advantage of effective interaction devices such as a mouse.
Obviously, for casual and inexperienced users, command language-based interfaces are
not suitable.

Issues in designing a command language-based interface Two overbearing
command design issues are to reduce the number of primitive commands that
a user has to remember and to minimise the

total typing required. We elaborate these considerations in the
following:

 The designer has to decide what mnemonics (command names) to use for the
different commands. The designer should try to develop meaningful mnemonics
and yet be concise to minimise the amount of typing required. For example, the
shortest mnemonic should be assigned to the most frequently used commands.

 The designer has to decide whether the users will be allowed to redefine the
command names to suit their own preferences. Letting a user define his own
mnemonics for various commands is a useful feature, but it increases the
complexity of user interface development.

 The designer has to decide whether it should be possible to compose primitive
commands to form more complex commands. A sophisticated command
composition facility would require the syntax and semantics of the various
command composition options to be clearly and unambiguously specified. The
ability to combine commands is a powerful facility in the hands of experienced
users, but quite unnecessary for inexperienced users.

Menu-based Interface

 An important advantage of a menu-based interface over a command language-based
interface is that a menu-based interface does not require the users to remember the
exact syntax of the commands. A menu-based interface is based on recognition of the
command names, rather than recollection. Humans are much better in recognising
something than recollecting it. Further, in a menu-based interface the typing effort is
minimal as most interactions are carried out through menu selections using a
pointing device. This factor is an important consideration for the occasional user
who cannot type fast.

However, experienced users find a menu-based user interface to be slower than a
command language-based interface because an experienced user can type fast and
can get speed advantage by composing different primitive commands to express
complex commands. Composing commands in a menu- based interface is not
possible. This is because of the fact that actions involving logical connectives (and, or,
etc.) are awkward to specify in a menu- based system. Also, if the number of choices
is large, it is difficult to design a menu-based interfae. A moderate-sized software
might need hundreds or thousands of different menu choices. In fact, a major
challenge in the design of a menu-based interface is to structure large number of
menu choices into manageable forms. In the following, we discuss some of the
techniques available to structure a large number of menu items:

 Scrolling menu: Sometimes the full choice list is large and cannot be displayed
within the menu area, scrolling of the menu items is required. This would enable the
user to view and select the menu items that cannot be accommodated on the screen.
However, in a scrolling menu all the commands should be highly correlated, so that
the user can easily locate a command that he needs. This is important since the user
cannot see all the commands at any one time. An example situation where a scrolling
menu is frequently used is font size selection in a document processor (see Figure 9.1).
Here, the user knows that the command list contains only the font sizes that are
arranged in some order and he can scroll up or down to find the size he is looking for.
However, if the commands do not have any definite ordering relation, then the user
would have to in the worst case, scroll through all the commands to find the exact
command he is looking for, making this organisation inefficient.

Figure 9.1: Font size selection using scro ling menu.

Walking menu: Walking menu is very commonly used to structure a large collection of
menu items. In this technique, when a menu item is selected, it causes further menu
items to be displayed adjacent to it in a sub-menu. An example of a walking menu is
shown in Figure 9.2. A walking menu can successfully be used to structure commands
only if there are tens rather than hundreds of choices since each adjacently displayed
menu does take up screen space and the total screen area is after all limited.

Figure 9.2: Example of walking menu.

Hierarchical menu: This type of menu is suitable for small screens with limited
display area such as that in mobile phones. In a hierarchical menu, the menu
items are organised in a hierarchy or tree structure. Selecting a menu item causes
the current menu display to be replaced by an appropriate sub-menu. Thus in this
case, one can consider the menu and its various sub- menu to form a hierarchical
tree-like structure. Walking menu can be considered to be a form of hierarchical
menu which is practicable when the tree is shallow. Hierarchical menu can be used
to manage large number of choices, but the users are likely to face navigational
problems because they might lose track of where they are in the menu tree. This
probably is the main reason why this type of interface is very rarely used.

Direct Manipulation Interfaces

Direct manipulation interfaces present the interface to the user in the form of

visual models (i.e., icons 2 or objects). For this reason, direct manipulation
interfaces are sometimes called as iconic interfaces. In this type of interface, the
user issues commands by performing actions on the visual representations of
the objects, e.g., pull an icon representing a file into an icon representing a
trash box, for deleting the file.

Important advantages of iconic interfaces include the fact that the icons can be
recognised by the users very easily, and that icons are language- independent.
However, experienced users find direct manipulation interfaces very for too. Also, it
is difficult to give complex commands using a direct manipulation interface.

Decision Tree and Decision Table
 Data is one of the foremost resources of an organization. Every organization
wishes to preserve and fully utilize its data for decision-making. Once data is
acquired, it must be organized in an application's database for later use.
A database is a collection of facts, rules, and meta-data. There are different ways to
organize a database. A variety of knowledge representations techniques, such as
semantic nets, frames scripts, lists, decision trees, decision tables, etc., have been
proposed for use over the years. One data representation scheme may be more
efficient than others depending on the nature and type of problem. Thus, there is a
need to map data from one representation to another.
This mapping may give a faster response and reduce computation amount. Data in the
form of rules is easy to understand and fast to extract and implement. Rules can be
constructed from the data in a decision tree and decision table.

The blog's primary focus is to construct rules from the data presented in the form of a
decision tree and decision table. A human user can understand and modify a set of
rules much more easily than he or she can understand and modify a decision tree or
decision table.
During Structured Analysis, various techniques and tools are used for system
development. These are:
 Data Dictionary

 Data Flow Diagrams
 Decision Tables
 Structured English
 Decision Trees
 Pseudocode

Decision Tree
A Decision Tree is a graph that uses a branching method to display all the possible
outcomes of any decision. It helps in processing logic involved in decision-making, and
corresponding actions are taken. It is a diagram that shows conditions and their
alternative actions within a horizontal tree framework. It helps the analyst consider the
sequence of decisions and identifies the accurate decision that must be made.
Links are used for decisions, while Nodes represent goals. Decision trees simplify the
knowledge acquisition process and are more natural than frames and rule knowledge
representation techniques.
Let’s understand this with an example:
Conditions included the sale amount (under $50) and whether the customer paid by
cheque or credit card. The four steps possible were to:

 Complete the sale after verifying the signature.
 Complete the sale with no signature needed.
 Communicate electronically with the bank for credit card authorization.
 Call the supervisor for approval.

The below figure illustrates how this example can be drawn as a decision tree. In
drawing the tree.

Advantages of decision trees

 Decision trees represent the logic of If-Else in a pictorial form.
 Decision trees help the analyst to identify the actual decision to be made.
 Decision trees are useful for expressing the logic when the value is variable or action

depending on a nested decision.
 It is used to verify the problems that involve a limited number of actions.

Also see, V Model in Software Engineering
Decision Tables
Data is stored in the tabular form inside decision tables using rows and columns. A
decision table contains condition entries, condition stubs, action entries, and action
stubs. The upper left quadrant contains conditions. The upper right quadrant contains
condition alternatives or rules. The lower right quadrant contains action rules, and the
lower-left quadrant contains actions to be taken. Verification and validation of the
decision table are much easy to check, such as Inconsistencies, Contradictions,
Incompleteness, and Redundancy.
Example of Decision Table
Let's consider the decision table given in table 1.
In the table, there are multiple rules for a single Decision. The rules from a decision table
can be made by just putting AND between conditions.
The major rules which can be extracted (taken out) from the table are:

 R1 = If (working-day = Y) ^ (holiday = N) ^ (Rainy-day = Y) Then, Go to office.
 R2 = If (working-day = N) ^ (holiday = N) ^ (Rainy-day = N) Then, Go to office.
 R3 = If (working-day = N) ^ (holiday = Y) ^ (Rainy-day = Y) Then, Watch TV.

https://www.naukri.com/code360/library/v-model-in-software-engineering

 R4 = If (working-day = N) ^ (holiday = Y) ^ (Rainy-day = N) Then, Go to picnic.

The above rules can be optimized by:
Optimized R1= If (working-day = Y) then Go to office
Or
Optimized R1= If (holiday = N) then Go to office
Optimized R3= If (working-day = N) ^ (Rainy-day = Y) Then Watch TV
Or
Optimized R3= If (holiday = Y) ^ (Rainy-day = Y) Then Watch TV
Optimized R4= If (working-day = N) ^ (Rainy-day = N)
Then go to the picnic.
Or
Optimized R4= If (holiday = Y) ^ (Rainy-day = N)
Then go to the picnic.
The tree given below is the resultant tree of Table 1.
The following rules are constructed from the decision tree as shown below.
R1= If (Day = Working) ^ (Outlook = Rainy)
Then Go To Office

R2= If (Day = Working) ^ (Outlook = Sunny)
Then Go To Office

R3= If (Day = Holiday) ^ (Outlook = Rainy)
Then Watch TV

R4=If (Day = Holiday) ^ (Outlook = Sunny)
Then Go To Picnic

In R1 and R2, there is no need to check the condition Outlook = Rainy and Outlook
= Sunny if day = working because if the day is working, whether it is a sunny or
rainy day, the decision is to Go to the office. The following rules are the optimized
version of R1 and R2 above rules.
R1 optimized: If (Day = Working) Then Go To Office
R2 optimized: If (Day = Working) Then Go To Office
The refinement/optimization step result is effective, efficient, and accurate rules.
Conversion of decision table into decision tree
Data can be transformed from a decision table into a tree structure. The decision
table can be converted into a decision tree by using the conversion method
discussed or some other technique. The resultant tree has two categories:
balanced trees and unbalanced trees. The figure shows the input and output of the
conversion process.

Advantages of a Decision tree over Decision table
 The decision tree takes advantage of the sequential structure of decision tree
branches to notice the order of checking conditions and executing actions immediately.

 Decision tree is used to verify the problems that involve a limited number of actions.
 All those actions and conditions that are critical are connected directly to other

conditions and actions, whereas the conditions that do not matter are absent. In other
words, the trees do not have to be symmetrical.

 Decision tree is helpful to express the logic when the value is variable, or action is
dependent on the nested decision.

 MODULE-III

CODING AND TESTING

In this chapter, we will discuss the coding and testing phases of the software life cycle.

In the coding phase, every module specified in the design document is coded and
unit tested. During unit testing, each module is tested in isolation from other modules.
That is, a module is tested independently as and when its coding is complete.

Integration and testing of modules is carried out according to an integration plan.
The integration plan, according to which different modules are integrated together,
usually envisages integration of modules through a number of steps. During each
integration step, a number of modules are added to the partially integrated system and
the resultant system is tested. The full product takes shape only after all the modules
have been integrated together. System testing is conducted on the full product. During
system testing, the product is tested against its requirements as recorded in the SRS
document.

We had already pointed out in Chapter 2 that testing is an important phase in
software development and typically requires the maximum effort among all the
development phases. Usually, testing of a professional software is carried out using a
large number of test cases. It is usually the case that many of the different test cases
can be executed in parallel by different team members. Therefore, to reduce the
testing time, during the testing phase the largest manpower (compared to all other life
cycle phases) is deployed. In a typical development organisation, at any time, the
maximum number of software

Coding is undertaken once the design phase is complete and the design documents
have been successfully reviewed.

After all the modules of a system have been coded and unit tested, the integration
and system testing phase is undertaken.

engineers can be found to be engaged in testing activities. It is not very surprising
then that in the software industry there is always a large demand for software test
engineers. However, many novice engineers bear the wrong impression that testing
is a secondary activity and that it is intellectually not as stimulating as the
activities associated with the other development phases.

As we shall soon realize, testing a software product is as much challenging as
initial development activities such as specifications, design, and coding. Moreover,
testing involves a lot of creative thinking.

In this Chapter, we first discuss some important issues associated with the
activities undertaken in the coding phase. Subsequently, we focus on various types
of program testing techniques for procedural and object-oriented programs.

CODING

The input to the coding phase is the design document produced at the end of the
design phase. Please recollect that the design document contains not only the high-
level design of the system in the form of a module structure (e.g., a structure chart),
but also the detailed design. The detailed design is usually documented in the form
of module specifications where the data structures and algorithms for each module
are specified. During the coding phase, different modules identified in the design
document are coded according to their respective module specifications. We can
describe the overall objective of the coding phase to be the following.

Normally, good software development organisations require their programmers
to adhere to some well-defined and standard style of coding which is called their
coding standard. These software development organisations formulate their own
coding standards that suit them the most, and require their developers to follow
the standards rigorously because of the significant business advantages it offers.
The main advantages of adhering to a standard style of coding are the following:

Over the years, the general perception of testing as monkeys typing in random data
and trying to crash the system has changed. Now testers are looked upon as masters
of specialised concepts, techniques, and tools.

The objective of the coding phase is to transform the design of a system into code in
a high-level language, and then to unit test this code.

 A coding standard gives a uniform appearance to the codes written by
different engineers.

 It facilitates code understanding and code reuse.
It promotes good programming practices.

A coding standard lists several rules to be followed during coding, such as the
way variables are to be named, the way the code is to be laid out, the error
return conventions, etc. Besides the coding standards, several coding guidelines
are also prescribed by software companies. But, what is the difference between
a coding guideline and a coding standard?

After a module has been coded, usually code review is carried out to ensure that
the coding standards are followed and also to detect as many errors as possible
before testing. It is important to detect as many errors as possible during code
reviews, because reviews are an efficient way of removing errors from code as
compared to defect elimination using testing. We first discuss a few
representative coding standards and guidelines. Subsequently, we discuss
code review techniques. We then discuss software documentation in Section
10.3.

Coding Standards and Guidelines

Good software development organisations usually develop their own coding
standards and guidelines depending on what suits their organisation best and
based on the specific types of software they develop. To give an idea about the
types of coding standards that are being used, we shall only list some general
coding standards and guidelines that are commonly adopted by many software
development organisations, rather than trying to provide an exhaustive list.

Representative coding standards

Rules for limiting the use of globals: These rules list what types of data can be
declared global and what cannot, with a view to limit the data that needs to be
defined with global scope.

Standard headers for different modules: The header of different modules
should have standard format and information for ease of understanding and

It is mandatory for the programmers to follow the coding standards. Compliance of
their code to coding standards is verified during code inspection. Any code that does
not conform to the coding standards is rejected during code review and the code is
reworked by the concerned programmer. In contrast, coding guidelines provide some
general suggestions regarding the coding style to be followed but leave the actual
implementation of these guidelines to the discretion of the individual developers.

maintenance. The following is an example of header format that is being used
in some companies:

 Name of the module.
 Date on which the module was created.

Author’s name.
 Modification history.
 Synopsis of the module. This is a small writeup about what the module does.
 Different functions supported in the module, along with their

input/output parameters.
 Global variables accessed/modified by the module.

Naming conventions for global variables, local variables, and constant
identifiers: A popular naming convention is that variables are named using
mixed case lettering. Global variable names would always start with a capital
letter (e.g., GlobalData) and local variable names start with small letters (e.g.,
localData). Constant names should be formed using capital letters only (e.g.,
CONSTDATA).

Conventions regarding error return values and exception handling mechanisms:
The way error conditions are reported by different functions in a program should be
standard within an organisation. For example, all functions while encountering an
error condition should either return a 0 or 1 consistently, independent of which
programmer has written the code. This facilitates reuse and debugging.

Representative coding guidelines: The following are some representative coding
guidelines that are recommended by many software development organisations.
Wherever necessary, the rationale behind these guidelines is also mentioned.

Do not use a coding style that is too clever or too difficult to understand: Code
should be easy to understand. Many inexperienced engineers actually take pride in
writing cryptic and incomprehensible code. Cl e ve r coding can obscure meaning of
the code and reduce code understandability; thereby making maintenance and
debugging difficult and expensive.

Avoid obscure side effects: The side effects of a function call include modifications to
the parameters passed by reference, modification of global variables, and I/O
operations. An obscure side effect is one that is not obvious from a casual
examination of the code. Obscure side effects make it difficult to understand a piece of
code. For example, suppose the value of a global variable is changed or some file I/O is
performed obscurely in a called module. That is, this is difficult to infer from the
function’s name and header information. Then, it would be really hard to understand
the code.

Do not use an identifier for multiple purposes: Programmers often use the same

identifier to denote several temporary entities. For example, some programmers
make use of a temporary loop variable for also computing and storing the final result.
The rationale that they give for such multiple use of variables is memory efficiency,
e.g., three variables use up three memory locations, whereas when the same variable
is used for three different purposes, only one memory location is used. However,
there are sev eral things wrong with this approach and hence should be avoided.
Some of the problems caused by the use of a variable for multiple purposes are as
follows:

 Each variable should be given a descriptive name indicating its purpose. This is not
possible if an identifier is used for multiple purposes. Use of a variable for multiple
purposes can lead to confusion and make it difficult for somebody trying to read and
understand the code.

 Use of variables for multiple purposes usually makes future enhancements more
difficult. For example, while changing the final computed result from integer to float
type, the programmer might subsequently notice that it has also been used as a
temporary loop variable that cannot be a float type.

Code should be well-documented: As a rule of thumb, there should be at least one
comment line on the average for every three source lines of code.

Length of any function should not exceed 10 source lines: A lengthy function is
usually very difficult to understand as it probably has a large number of variables and
carries out many different types of computations. For the same reason, lengthy
functions are likely to have disproportionately larger number of bugs.
Do not use GO TO statements: Use of GO TO statements makes a program Testing is
an effective defect removal mechanism. However, testing is applicable to only
executable code. Review is a very effective technique to remove defects from source
code. In fact, review has been acknowledged to be more cost-effective in removing
defects as compared to testing. Over the years, review techniques have become
extremely popular and have been generalised for use with other work products.
Code review for a module is undertaken after the module successfully compiles. That
is, all the syntax errors have been eliminated from the module. Obviously, code
review does not target to design syntax errors in a program, but is designed to detect
logical, algorithmic, and programming errors. Code review has been recognised as an
extremely cost-effective strategy for eliminating coding errors and for producing high
quality code.
The reason behind why code review is a much more cost-effective strategy to
eliminate errors from code compared to testing is that reviews directly detect errors.
On the other hand, testing only helps detect failures and significant effort is needed to
locate the error during debugging.
The rationale behind the above statement isexplained as follows.

Eliminating an error from code involves three main activities—testing,

debugging, and then correcting the errors. Testing is carried out to detect if the
system fails to work satisfactorily for certain types of inputs and under certain
circumstances. Once a failure is detected, debugging is carried out to locate the
error that is causing the failure and to remove it. Of the three testing
 activities, debugging is possibly the most laborious and time
consuming activity. In code inspection, errors are directly detected, thereby
saving the significant effort that would have been required to locate the error.

Normally, the following two types of reviews are carried out on the code of a module:
 Code inspection.

 Code walkthrough.
The procedures for conduction and the final objectives of these two review techniques

are very different. In the following two subsections, we discuss these two code
review techniques.

Code Walkthrough
Code walkthrough is an informal code analysis technique. In this technique, a module

is taken up for review after the module has been coded, successfully compiled, and
all syntax errors have been eliminated. A few members of the development team are
given the code a couple of days before the walkthrough meeting. Each member
selects some test cases and simulates execution of the code by hand (i.e., traces the
execution through different statements and functions of the code).

The members note down their findings of their walkthrough and discuss those in a

walkthrough meeting where the coder of the module is present.
Even though code walkthrough is an informal analysis technique, several guidelines

have evolved over the years for making this naive but useful analysis technique
more effective. These guidelines are based on personal experience, common sense,
several other subjective factors. Therefore, these guidelines should be considered as
examples rather than as accepted rules to be applied dogmatically. Some of these
guidelines are following:

 The team performing code walkthrough should not be either too big or too small.
Ideally, it should consist of between three to seven members.

 Discussions should focus on discovery of errors and avoid deliberations on how to
fix the discovered errors.

 In order to foster co-operation and to avoid the feeling among the engineers that
they are being watched and evaluated in the code walkthrough meetings, managers
should not attend the walkthrough meetings.

Code Inspection
During code inspection, the code is examined for the presence of some common

programming errors. This is in contrast to the hand simulation of code execution

The main objective of code walkthrough is to discover the algorithmic and logical
errors in the code.

carried out during code walkthroughs. We can state the principal aim of the code
inspection to be the following:

The inspection process has several beneficial side effects, other than finding
errors. The programmer usually receives feedback on programming style, choice of
algorithm, and programming techniques. The other participants gain by being exposed

to another programmer’s errors.
As an example of the type of errors detected during code inspection, consider the

classic error of writing a procedure that modifies a formal parameter and then calls it
with a constant actual parameter. It is more lik ely that such an error can be discovered
by specifically looking for this kinds of mistakes in the code, rather than by simply hand
simulating execution of the code. In addition to the commonly made errors, adherence
to coding standards is also checked during code inspection.

Good software development companies collect statistics regarding different types of
errors that are commonly committed by their engineers and identify the types of errors
most frequently committed. Such a list of commonly committed errors can be used as a
checklist during code inspection to look out for possible errors.

Following is a list of some classical programming errors which can be checked
during code inspection:

 Use of uninitialised variables.
Jumps into loops.
 Non-terminating loops.
 Incompatible assignments.

Array indices out of bounds.
 Improper storage allocation and deallocation.
 Mismatch between actual and formal parameter in procedure calls.
 Use of incorrect logical operators or incorrect precedence among

operators.
 Improper modification of loop variables.
 Comparison of equality of floating point values.
 Dangling reference caused when the referenced memory has not been allocated.

Clean Room Testing

Clean room testing was pioneered at IBM. This type of testing relies.heavily on
walkthroughs, inspection, and formal verification. The programmers are not allowed
to test any of their code by executing the code other than doing some syntax testing
using a compiler. It is interesting to note that the term cleanroom was first coined at
IBM by drawing analogy to the semiconductor fabrication units where defects are
avoided by manufacturing in an ultra-clean atmosphere.
This technique reportedly produces documentation and code that is more reliable
and maintainable than other development methods relying heavily on code
execution-based testing. The main problem with this approach is that testing effort is
increased as walkthroughs, inspection, and verification are time consuming for
detecting all simple errors. Also testing- based error detection is efficient for
detecting certain errors that escape manual inspection.
SOFTWARE DOCUMENTATION

When a software is developed, in addition to the executable files and the source code,
several kinds of documents such as users’ manual, software requirements
specification (SRS) document, design document, test document, installation manual,
etc., are developed as part of the software engineering process. All these documents
are considered a vital part of any good software development practice. Good
documents are helpful in the following ways:

 Good documents help enhance understandability of code. As a result, the availability
of good documents help to reduce the effort and time required for maintenance.

 Documents help the users to understand and effectively use the system.

 Good documents help to effectively tackle the manpower turnover1 problem. Even
when an engineer leaves the organisation, and a new engineer comes in, he can build
up the required knowledge easily by referring to the documents.
 Production of good documents helps the manager to effectively track the progress

of the project. The project manager would know that some measurable progress has
been achieved, if the results of some pieces of work has been documented and the
same has been reviewed

Different types of software documents can broadly be classified into the following:

We discuss these two types of documentation in the next section.

Internal Documentation

Internal documentation is the code comprehension features provided in the source
code itself. Internal documentation can be provided in the code in several forms. The
important types of internal documentation are the following:

 Comments embedded in the source code. Use
of meaningful variable names.
 Module and function headers.

Code indentation.
 Code structuring (i.e., code decomposed into modules and functions). Use of

enumerated types.
 Use of constant identifiers.
 Use of user-defined data types.

Out of these different types of internal documentation, which one is the most
valuable for understanding a piece of code?

The above assertion, of course, is in contrast to the common expectation that code
commenting would be the most useful. The research finding is obviously true when
comments are written without much thought. For example, the following style of
code commenting is not much of a help in understanding the code.

a=10; /* a made 10 */

A good style of code commenting is to write to clarify certain non-obvious aspects of
the working of the code, rather than cluttering the code with trivial comments. Good
software development organisations usually ensure good internal documentation
by appropriately formulating their coding standards

Internal documentation: These are provided in the source code itself.

External documentation: These are the supporting documents such as SRS
document, installation document, user manual, design document, and test document.

Careful experiments suggest that out of all types of internal documentation,
meaningful variable names is most useful while trying to understand a piece of code.

and coding guidelines. Even when a piece of code is carefully commented,
meaningful variable names has been found to be the most helpful in understanding
the code.

External Documentation

External documentation is provided through various types of supporting
documents such as users’ manual, software requirements specification document,
design document, test document, etc. A systematic software development style
ensures that all these documents are of good quality and are produced in an
orderly fashion.

An important feature that is requierd of any good external documentation is
consistency with the code. If the different documents are not consistent, a lot of
confusion is created for somebody trying to understand the software. In other
words, all the documents developed for a product should be up-to-date and every
change made to the code should be reflected in the relevant external documents.
Even if only a few documents are not up-to-date, they create inconsistency and
lead to confusion. Another important feature required for external documents is
proper understandability by the category of users for whom the document is
designed. For achieving this, Gunning’s fog index is very useful. We discuss this
next.

Gunning’s fog index

Gunning’s fog index (developed by Robert Gunning in 1952) is a metric that has
been designed to measure the readability of a document. The computed metric
value (fog index) of a document indicates the number of years of formal education
that a person should have, in order to be able to comfortably understand that
document. That is, if a certain document has a fog index of 12, any one who has
completed his 12th class would not have much difficulty in understanding that
document.
The Gunning’s fog index of a document D can be computed as follows:

Observe that the fog index is computed as the sum of two different factors. The

first factor computes the average number of words per sentence (total number of
words in the document divided by the total number of sentences). This factor
therefore accounts for the common observation that long sentences are difficult to
understand. The second factor measures the percentage of complex words in the
document. Note that a syllable is a group

o f words that can be independently pronounced. For example, the word
“sentence” has three syllables (“sen”, “ten”, and “ce”). Words having more than
three syllables are complex words and presence of many such words hamper
readability of a document.

Example 10.1 Consider the following sentence: “The Gunning’s fog index is based
on the premise that use of short sentences and simple words makes a document
easy to understand.” Calculate its Fog index.
The fog index of the above example sentence is

0.4 ◻ (23/1) + (4/23) ◻ 100 = 26

If a users’ manual is to be designed for use by factory workers whose
educational qualification is class 8, then the document should be written such that
the Gunning’s fog index of the document does not exceed 8.

TESTING

The aim of program testing is to help realiseidentify all defects in a program.
However, in practice, even after satisfactory completion of the testing phase, it is
not possible to guarantee that a program is error free. This is because the input
data domain of most programs is very large, and it is not practical to test the
program exhaustively with respect to each value that the input can assume.
Consider a function taking a floating point number as argument. If a tester takes
1sec to type in a value, then even a million testers would not be able to
exhaustively test it after trying for a million number of years. Even with this
obvious limitation of the testing process, we should not underestimate the
importance of testing. We must remember that careful testing can expose a large
percentage of the defects existing in a program, and therefore provides a practical
way of reducing defects in a system.

Basic Concepts and Terminologies

In this section, we will discuss a few basic concepts in program testing on which
our subsequent discussions on program testing would be based.

How to test a program?

Testing a program involves executing the program with a set of test inputs and
observing if the program behaves as expected. If the

program fails to behave as expected, then the input data and the conditions
under which it fails are noted for later debugging and error correction. A highly
simplified view of program testing is schematically shown in Figure 10.1. The
tester has been shown as a stick icon, who inputs several test data to the system
and observes the outputs produced by it to check if the system fails on some
specific inputs. Unless the conditions under which a software fails are noted
down, it becomes difficult for the developers to reproduce a failure observed by
the testers. For examples, a software might fail for a test case only when a
network connection is enabled.

 Figure 10.1: A simplified view of program testing.

Verification versus validation
The objectives of both verification and validation techniques are very similar since

both these techniques are designed to help remove errors in a software. In spite of
the apparent similarity between their objectives, the underlying principles of these
two bug detection techniques and their applicability are very different. We
summarise the main differences between these two techniques in the following:

 Verification is the process of determining whether the output of one phase of software
development conforms to that of its previous phase; whereas validation is the process
of determining whether a fully developed software conforms to its requirements
specification. Thus, the objective of verification is to check if the work products
produced after a phase conform to that which was input to the phase. For example, a
verification step can be to check if the design documents produced after the design
step conform to the requirements specification. On the other hand, validation is
applied to the fully developed and integrated software to check if it satisfies the
customer’s requirements.

 The primary techniques used for verification include review, simulation, formal
verification, and testing. Review, simulation, and testing are usually considered as
informal verification techniques. Formal verification usually involves use of theorem
proving techniques or use of automated tools such as a model checker. On the other
hand, validation techniques are primarily based on product testing. Note that we have
categorised testing both under program verification and validation. The reason being
that unit and integration testing can be considered as verification steps where it is
verified whether the code is a s per the module and module interface specifications.
On the other hand, system testing can be considered as a validation step where it is
determined whether the fully developed code is as per its requirements specification.

 Verification does not require execution of the software, whereas validation requires
execution of the software.

 Verification is carried out during the development process to check if the
development activities are proceeding alright, whereas validation is carried out to
check if the right as required by the customer has been developed.

 Verification techniques can be viewed as an attempt to achieve phase
containment of errors. Phase containment of errors has been acknowledged to
be a cost-effective way to eliminate program bugs, and is an important software
engineering principle. The principle of detecting errors as close to their points
of commitment as possible is known as phase containment of errors. Phase
containment of errors can reduce the effort required for correcting bugs. For
example, if a design problem is detected in the design phase itself, then the
problem can be taken care of much more easily than if the error is identified,
say, at the end of the testing phase. In the later case, it would be necessary not
only to rework the design, but also to appropriately redo the relevant coding as
well as the system testing activities, thereby incurring higher cost.

We can consider the verification and validation techniques to be different types of

bug filters. To achieve high product reliability in a cost-effective manner, a
development team needs to perform both verification and validation activities. The
activities involved in these two types of bug detection techniques together are called
the “V and V” activities.

Based on the above discussions, we can conclude that:

Example 10.5 Is it at all possible to develop a highly reliable software, using validation
techniques alone? If so, can we say that all verification techniques are redundant?

Answer: It is possible to develop a highly reliable software using validation techniques
alone. However, this would cause the development cost to increase drastically.
Verification techniques help achieve phase containment of errors and provide a means
to cost-effectively remove bugs.

We can therefore say that the primary objective of the verification steps are to
determine whether the steps in product development are being carried out alright,
whereas validation is carried out towards the end of the development process to
determine whether the right product has been developed.

While verification is concerned with phase containment of errors, the aim of validation
is to check whether the deliverable software is error free.

Error detection techniques = Verification techniques + Validation techniques

Testing Activities

Testing involves performing the following main activities:

Test suite design: The set of test cases using which a program is to be tested is
designed possibly using several test case design techniques. We discuss a few
important test case design techniques later in this Chapter.

Running test cases and checking the results to detect failures: Each test case is
run and the results are compared with the expected results. A mismatch between the
actual result and expected results indicates a failure. The test cases for which the
system fails are noted down for later debugging.

Locate error: In this activity, the failure symptoms are analysed to locate the errors.
For each failure observed during the previous activity, the statements that are in error
are identified.

Error correction: After the error is located during debugging, the code is
appropriately changed to correct the error.
The testing activities have been shown schematically in Figure 10.2. As can be seen,
the test cases are first designed, the test cases are run to detect failures. The bugs
causing the failure are identified through debugging, and the identified error is
corrected.Of all the above mentioned testing activities, debugging often turns out to be
the most time-consuming activity.

Figure 10.2: Testing process.

10.1.1 Why Design Test Cases?

Before discussing the various test case design techniques, we need to convince ourselves
on the following question. Would it not be sufficient to test a software using a large
number of random input values? Why design test cases? The answer to this question—
this would be very costly and at the same time very ineffective way of testing due to the
following reasons:

Testing a software using a large collection of randomly selected test cases does not
guarantee that all (or even most) of the errors in the system will be uncovered. Let us
try to understand why the number of random test cases in a test suite, in general, does
not indicate of the effectiveness of testing. Consider the following example code
segment which determines the greater of two integer values x and y. This code
segment has a simple programming error:

if (x>y) max = x; else max =
x;

For the given code segment, the test suite {(x=3,y=2);(x=2,y=3)} can detect the error,
whereas a larger test suite {(x=3,y=2);(x=4,y=3); (x=5,y=1)} does not detect the error.
All the test cases in the larger test suite help detect the same error, while the other
error in the code remains undetected. So, it would be incorrect to say that a larger test
suite would always detect more errors than a smaller one, unless of course the larger
test suite has also been carefully designed. This implies that for effective testing, the
test suite should be carefully designed rather than picked randomly.

We have already pointed out that exhaustive testing of almost any non- trivial system
is impractical due to the fact that the domain of input data values to most practical
software systems is either extremely large or countably infinite. Therefore, to
satisfactorily test a software with minimum cost, we must design a minimal test suite
that is of reasonable size and can uncover as many existing errors in the system as
possible. To reduce testing cost and at the same time to make testing more effective,
systematic approaches have been developed to design a small test suite that can detect
most, if not all failures.

There are essentially two main approaches to systematically design test cases:

When test cases are designed based on random input data, many of the test cases do
not contribute to the significance of the test suite, That is, they do not help detect
any additional defects not already being detected by other test cases in the suite.

A minimal test suite is a carefully designed set of test cases such that each test case
helps detect different errors. This is in contrast to testing using some random input
values.

 Black-box approach
 White-box (or glass-box) approach

In the black-box approach, test cases are designed using only the functional
specification of the software. That is, test cases are designed solely based on an
analysis of the input/out behaviour (that is, functional behaviour) and does not
require any knowledge of the internal structure of a program. For this reason, black-
box testing is also known as functional testing. On the other hand, designing white-
box test cases requires a thorough knowledge of the internal structure of a program,
and therefore white-box testing is also called structural testing. Black- box test cases
are designed solely based on the input-output behaviour of a program. In contrast,
white-box test cases are based on an analysis of the code. These two approaches to test
case design are complementary. That is, a program has to be tested using the test cases
designed by both the approaches, and one testing using one approach does not
substitute testing using the other.

Testing in the Large versus Testing in the Small

A software product is normally tested in three levels or stages:

 Unit testing
 Integration testing

System testing

During unit testing, the individual functions (or units) of a program are tested.

After testing all the units individually, the units are slowly integrated and tested after
each step of integration (integration testing). Finally, the fully integrated system is
tested (system testing). Integration and system testing are known as testing in the
large.

Often beginners ask the question—“Why test each module (unit) in isolation first,
then integrate these modules and test, and again test the integrated set of modules—
why not just test the integrated set of modules once thoroughly?” The answer to this
question is the following—There are two main reasons to it. First while testing a
module, other modules with which this module needs to interface may not be
ready. Moreover, it is

Unit testing is referred to as testing in the small, whereas integration and system
testing are referred to as testing in the large.

always a good idea to first test the module in isolation before integration because it
makes debugging easier. If a failure is detected when an integrated set of modules is
being tested, it would be difficult to determine which module exactly has the error.

In the following sections, we discuss the different levels of testing. It should be borne
in mind in all our subsequent discussions that unit testing is carried out in the coding
phase itself as soon as coding of a module is complete. On the other hand, integration
and system testing are carried out during the testing phase.

 UNIT TESTING

Unit testing is undertaken after a module has been coded and reviewed. This
activity is typically undertaken by the coder of the module himself in the coding
phase. Before carrying out unit testing, the unit test cases have to be designed
and the test environment for the unit under test has to be developed. In this
section, we first discuss the environment needed to perform unit testing.

Driver and stub modules

In order to test a single module, we need a complete environment to provide all
relevant code that is necessary for execution of the module. That is, besides the
module under test, the following are needed to test the module:

 The procedures belonging to other modules that the module under test calls.
 Non-local data structures that the module accesses.
 A procedure to call the functions of the module under test with

appropriate parameters.

Modules required to provide the necessary environment (which either call or are
called by the module under test) are usually not available until they too have been
unit tested. In this context, stubs and drivers are designed to provide the complete
environment for a module so that testing can be carried out.

Stub: The role of stub and driver modules is pictorially shown in Figure 10.3. A stub
procedure is a dummy procedure that has the same I/O parameters as the function
called by the unit under test but has a highly simplified

behaviour. For example, a stub procedure may produce the expected behaviour using a
simple table look up mechanism.

Figure 10.3: Unit testing with the help of driver and stub modules.

Driver: A driver module should contain the non-local data structures accessed by
the module under test. Additionally, it should also have the code to call the
different functions of the unit under test with appropriate parameter values for
testing.

BLACK-BOX TESTING

In black-box testing, test cases are designed from an examination of the
input/output values only and no knowledge of design or code is required. The
following are the two main approaches available to design black box test
cases:

 Equivalence class partitioning
Boundary value analysis

In the following subsections, we will elaborate these two test case design
techniques.

Equivalence Class Partitioning

In the equivalence class partitioning approach, the domain of input values to the
program under test is partitioned into a set of equivalence classes. The partitioning is
done such that for every input data belonging to the same equivalence class, the
program behaves similarly.

Equivalence classes for a unit under test can be designed by examining the input data
and output data. The following are two general guidelines for designing the
equivalence classes:

1. If the input data values to a system can be specified by a range of values, then
one valid and two invalid equivalence classes need to be defined. For example,
if the equivalence class is the set of integers in the range 1 to 10 (i.e., [1,10]),
then the invalid equivalence classes are [−∞,0], [11,+∞].

2. If the input data assumes values from a set of discrete members of some
domain, then one equivalence class for the valid input values and another
equivalence class for the invalid input values should be defined. For example, if
the valid equivalence classes are {A,B,C}, then the invalid equivalence class
is □-{A,B,C}, where □ is the universe of possible input values.

In the following, we illustrate equivalence class partitioning-based test case
generation through four examples.

Example 10.6 For a software that computes the square root of an input integer that
can assume values in the range of 0 and 5000. Determine the equivalence classes and
the black box test suite.

Answer: There are three equivalence classes—The set of negative integers, the set of
integers in the range of 0 and 5000, and the set of integers larger than 5000. Therefore,
the test cases must include representatives for each of the three equivalence classes. A
possible test suite can be: {–5,500,6000}.

Example 10.7 Design the equivalence class test cases for a program that reads two
integer pairs (m1, c1) and (m2, c2) defining two straight lines of the form y=mx+c. The

program computes the intersection point of the two straight lines and displays the
point of intersection.

Answer: The equivalence classes are the following:

• Parallel lines (m1 = m2, c1 ◻ c2)

• Intersecting lines (m1 ◻ m2)

• Coincident lines (m1 = m2, c1 = c2)

Now, selecting one representative value from each equivalence class, we get the
required equivalence class test suite {(2,2)(2,5),(5,5)(7,7), (10,10)

(10,10)}.

Example 10.8 Design equivalence class partitioning test suite for a function that reads
a character string of size less than five characters and displays whether it is a
palindrome.

Answer: The equivalence classes are the leaf level classes shown in Figure
10.4. The equivalence classes are palindromes, non-palindromes, and invalid inputs.
Now, selecting one representative value from each equivalence class, we have the
required test suite: {abc,aba,abcdef}.

Figure 10.4: Equivalence classes for Example 10.6.

Boundary Value Analysis

A type of programming error that is frequently committed by programmers is missing
out on the special consideration that should be given to the values at the boundaries of
different equivalence classes of inputs. The reason behind programmers committing
such errors might purely be due to psychological factors. Programmers often fail to
properly address the special processing required by the input values that lie at the
boundary of the different equivalence classes. For example, programmers may
improperly use < instead of <=, or conversely <= for <, etc.

To design boundary value test cases, it is required to examine the equivalence
classes to check if any of the equivalence classes contains a range of values. For those
equivalence classes that are not a range of values

Boundary value analysis-based test suite design involves designing test cases using
the values at the boundaries of different equivalence classes.

(i.e., consist of a discrete collection of values) no boundary value test cases can be
defined. For an equivalence class that is a range of values, the boundary values need to
be included in the test suite. For example, if an equivalence class contains the integers
in the range 1 to 10, then the boundary value test suite is {0,1,10,11}.

Example 10.9 For a function that computes the square root of the integer values in the
range of 0 and 5000, determine the boundary value test suite.

Answer: There are three equivalence classes—The set of negative integers, the set of
integers in the range of 0 and 5000, and the set of integers larger than 5000. The
boundary value-based test suite is: {0,-1,5000,5001}.

Example 10.10 Design boundary value test suite for the function described in Example
10.6.

Answer: The equivalence classes have been showed in Figure 10.5. There is a
boundary between the valid and invalid equivalence classes. Thus, the boundary value
test suite is {abcdefg, abcdef}.

Figure 10.5: CFG for (a) sequence, (b) selection, and (c) iteration type of
constructs.

Summary of the Black-box Test Suite Design Approach

We now summarise the important steps in the black-box test suite design
approach:

 Examine the input and output values of the program.
Identify the equivalence classes.

 Design equivalence class test cases by picking one representative

value from each equivalence class.
 Design the boundary value test cases as follows. Examine if any equivalence class

is a range of values. Include the values at the boundaries of such equivalence
classes in the test suite.

The strategy for black-box testing is intuitive and simple. For black-box testing, the
most important step is the identification of the equivalence classes. Often, the
identification of the equivalence classes is not straightforward. However, with little
practice one would be able to identify all equivalence classes in the input data domain.
Without practice, one may overlook many equivalence classes in the input data set.
Once the equivalence classes are identified, the equivalence class and boundary value
test cases can be selected almost mechanically.

WHITE-BOX TESTING

White-box testing is an important type of unit testing. A large number of white-
box testing strategies exist. Each testing strategy essentially designs test cases
based on analysis of some aspect of source code and is based on some heuristic.
We first discuss some basic concepts associated with white-box testing, and
follow it up with a discussion on specific testing strategies.

Basic Concepts

A white-box testing strategy can either be coverage-based or fault- based.

Fault-based testing

A fault-based testing strategy targets to detect certain types of faults. These faults
that a test strategy focuses on constitutes the fault model of the strategy. An
example of a fault-based strategy is mutation testing, which is discussed later in
this section.

Coverage-based testing

A coverage-based testing strategy attempts to execute (or cover) certain elements
of a program. Popular examples of coverage-based testing strategies are
statement coverage, branch coverage, multiple condition coverage, and path
coverage-based testing.

Testing criterion for coverage-based testing

A coverage-based testing strategy typically targets to execute (i.e., cover) certain
program elements for discovering failures.

For example, if a testing strategy requires all the statements of a program to be
executed at least once, then we say that the testing criterion of the strategy is
statement coverage. We say that a test suite is adequate with respect to a criterion, if it
covers all elements of the domain defined by that criterion.

Stronger versus weaker testing

We have mentioned that a large number of white-box testing strategies have been
proposed. It therefore becomes necessary to compare the effectiveness of different
testing strategies in detecting faults. We can compare two testing strategies by
determining whether one is stronger, weaker, or complementary to the other.

When none of two testing strategies fully covers the program elements exercised
by the other, then the two are called complementary testing strategies. The
concepts of stronger, weaker, and complementary testing are schematically illustrated
in Figure 10.6. Observe in Figure 10.6(a) that testing strategy A is stronger than B since
B covers only a proper subset of elements covered by B. On the other hand, Figure
10.6(b) shows A and B are complementary testing strategies since some elements
of A are not covered by B and vice versa.

If a stronger testing has been performed, then a weaker testing need not be carried
out.

The set of specific program elements that a testing strategy targets to execute is
called the testing criterion of the strategy.

A white-box testing strategy is said to be stronger than another strategy, if the
stronger testing strategy covers all program elements covered by the weaker testing
strategy, and the stronger strategy additionally covers at least one program element
that is not covered by the weaker strategy.

Figure 10.6: I lustration of stronger, weaker, and complementary testing
strategies.

A test suite should, however, be enriched by using various complementary testing
strategies.

Statement Coverage

The statement coverage strategy aims to design test cases so as to execute every
statement in a program at least once.

It is obvious that without executing a statement, it is difficult to determine whether it
causes a failure due to illegal memory access, wrong result computation due to
improper arithmetic operation, etc. It can however be pointed out that a weakness of

We need to point out that coverage-based testing is frequently used to check the
quality of testing achieved by a test suite. It is hard to manually design a test suite to
achieve a specific coverage for a non-trivial program.

The principal idea governing the statement coverage strategy is that unless a
statement is executed, there is no way to determine whether an error exists in that
statement.

the statement- coverage strategy is that executing a statement once and observing
that it behaves properly for one

input value is no guarantee that it will behave correctly for all input values. Never the
less, statement coverage is a very intuitive and appealing testing technique. In the
following, we illustrate a test suite that achieves statement coverage.

Example 10.11 Design statement coverage-based test suite for the following Euclid’s
GCD computation program:

int computeGCD(x,y) int x,y;
{

1 while (x != y){
2 if (x>y) then

3 x=x-y;

4 else y=y-x;
5 }

6 return x;
}

Answer: To design the test cases for the statement coverage, the conditional
expression of the while statement needs to be made true and the conditional
expression of the if statement needs to be made both true and false. By choosing the
test set {(x = 3, y = 3), (x = 4, y = 3), (x = 3, y = 4)}, all statements of the program would
be executed at least once.

Branch Coverage

A test suite satisfies branch coverage, if it makes each branch condition in the
program to assume true and false values in turn. In other words, for branch
coverage each branch in the CFG representation of the program must be taken at
least once, when the test suite is executed. Branch testing is also known as edge
testing, since in this testing scheme, each edge of a program’s control flow graph
is traversed at least once.

Example 10.12 For the program of Example 10.11, determine a test suite to achieve
branch coverage.

Answer: The test suite {(x = 3, y = 3), (x = 3, y = 2), (x = 4, y = 3), (x = 3, y = 4)}
achieves branch coverage.

It is easy to show that branch coverage-based testing is a stronger testing than
statement coverage-based testing. We can prove this by showing that branch coverage
ensures statement coverage, but not vice versa.

Theorem 10.1 Branch coverage-based testing is stronger than statement coverage-
based testing.

Proof: We need to show that (a) branch coverage ensures statement coverage, and (b)
statement coverage does not ensure branch coverage.

(a) Branch testing would guarantee statement coverage since every statement
must belong to some branch (assuming that there is no unreachable code).

(b) To show that statement coverage does not ensure branch coverage, it would be
sufficient to give an example of a test suite that achieves statement coverage, but
does not cover at least one branch. Consider the following code, and the test suite
{5}.

if(x>2) x+=1;

The test suite would achieve statement coverage. However, it does not achieve
branch coverage, since the condition (x > 2) is not made false by any test case in the
suite.

Multiple Condition Coverage

In the multiple condition (MC) coverage-based testing, test cases are designed to
make each component of a composite conditional expression to assume both
true and false values. For example, consider the composite conditional
expression ((c1 .and.c2).or.c3). A test suite would achieve MC coverage, if all the

component conditions c1, c2 and c3 are each made to assume both true and false

values. Branch testing can be considered to be a simplistic condition testing
strategy where only the compound conditions appearing in the different branch
statements are made to assume the true and false values. It is easy to prove that
condition testing is a stronger testing strategy than branch testing. For a
composite conditional expression of n components, 2n test cases are required
for multiple condition coverage. Thus, for multiple condition coverage, the
number of test cases increases exponentially with the number of component
conditions. Therefore, multiple condition coverage-based testing technique is
practical only if n (the number of conditions) is small.

Example 10.13 Give an example of a fault that is detected by multiple condition
coverage, but not by branch coverage.

Answer: Consider the following C program segment:

if(temperature>150 || temperature>50)
setWarningLightOn();

The program segment has a bug in the second component condition, it
should have been temperature<50. The test suite {temperature=160, temperature=40}
achieves branch coverage. But, it is not able to check that setWarningLightOn(); should
not be called for temperature values within 150 and 50.

Path Coverage

A test suite achieves path coverage if it exeutes each linearly independent paths (
o r basis paths) at least once. A linearly independent path can be defined in
terms of the control flow graph (CFG) of a program. Therefore, to understand
path coverage-based testing strategy, we need to first understand how the CFG
of a program can be drawn.

Control flow graph (CFG)

A control flow graph describes how the control flows through the program. We can
define a control flow graph as the following:

In order to draw the control flow graph of a program, we need to first number all the
statements of a program. The different numbered statements serve as nodes of the
control flow graph (see Figure 10.5). There exists an edge from one node to another, if
the execution of the statement representing the first node can result in the transfer of
control to the other node.

More formally, we can define a CFG as follows. A CFG is a directed graph consisting of
a set of nodes and edges (N, E), such that each node n ◻ N corresponds to a unique
program statement and an edge exists between two nodes if control can transfer from
one node to the other.

We can easily draw the CFG for any program, if we know how to represent the
sequence, selection, and iteration types of statements in the CFG. After all, every
program is constructed by using these three types of constructs only. Figure 10.5
summarises how the CFG for these three types of constructs can be drawn. The CFG
representation of the sequence and decision types of statements is straight forward.
Please note carefully how the CFG for the loop

A control flow graph describes the sequence in which the different instructions of a
program get executed.

(iteration) construct can be drawn. For iteration type of constructs such as the while
construct, the loop condition is tested only at the beginning of the loop and therefore
always control flows from the last statement of the loop to the top of the loop. That is,
the loop construct terminates from the first statement (after the loop is found to be
false) and does not at any time exit the loop at the last statement of the loop. Using
these basic ideas, the CFG of the program given in Figure 10.7(a) can be drawn as
shown in Figure 10.7(b).

Path

Figure 10.7: Control flow diagram of an example program.

A path through a program is any node and edge sequence from the start node to a
terminal node of the control flow graph of a program. Please note that a program
can have more than one terminal nodes when it contains multiple exit or return
type of statements. Writing test cases to cover all paths of a typical program is
impractical since there can be an infinite number of paths through a program in
presence of loops. For example, in Figure 10.5(c), there can be an infinite
number of paths

such as 12314, 12312314, 12312312314, etc. If coverage of all paths is
attempted, then the number of test cases required would become infinitely large.
For this reason, path coverage testing does not try to cover all paths, but only a
subset of paths called linearly independent pa t hs (o r basis paths). Let us
now discuss what are linearly independent paths and how to determine these
in a program.

Linearly independent set of paths (or basis path set)

A set of paths for a given program is called linearly independent set of paths (or the set
of basis paths or simply the basis set), if each path in the set introduces at least one
new edge that is not included in any other path in the set. Please note that even if we
find that a path has one new node compared to all other linearly independent paths,
then this path should also be included in the set of linearly independent paths. This is
because, any path having a new node would automatically have a new edge. An
alternative definition of a linearly independent set of paths [McCabe76] is the
following:

According to the above definition of a linearly independent set of paths, for any path
in the set, its subpath cannot be a member of the set. In fact, any arbitrary path of a
program, can be synthesized by carrying out linear operations on the basis paths.
Possibly, the name basis set comes from the observation that the paths in the basis set
form the “basis” for all the paths of a program. Please note that there may not always
exist a unique basis set for a program and several basis sets for the same program can
usually be determined.

Even though it is straight forward to identify the linearly independent paths for
simple programs, for more complex programs it is not easy to determine the number of
independent paths. In this context, McCabe’s cyclomatic complexity metric is an
important result that lets us compute the number of linearly independent paths for any
arbitrary program. McCabe’s cyclomatic complexity defines an upper bound for the
number of linearly independent paths through a program. Also, the McCabe’s
cyclomatic complexity is very simple to compute. Though the McCabe’s metric does not
directly identify the linearly independent paths, but it provides us with a practical way
of determining approximately how many paths to look for.

If a set of paths is linearly independent of each other, then no path in the set can be
obtained through any linear operations (i.e., additions or subtractions) on the other
paths in the set.

McCabe’s Cyclomatic Complexity Metric

McCabe obtained his results by applying graph-theoretic techniques to the
control flow graph ofa program. McCabe’s cyclomatic complexity defines an
upper bound on the number of independent paths in a program. We discuss
three different ways to compute the cyclomatic complexity. For structured
programs, the results computed by all the three methods are guaranteed to
agree.

Method 1: Given a control flow graph G of a program, the cyclomatic complexity V(G)
can be computed as:

V(G) = E – N + 2

where, N is the number of nodes of the control flow graph and E is the number of
edges in the control flow graph.

For the CFG of example shown in Figure 10.7, E = 7 and N = 6. Therefore, the value of
the Cyclomatic complexity = 7 – 6 + 2 = 3.

Method 2: An alternate way of computing the cyclomatic complexity of a program is
based on a visual inspection of the control flow graph is as follows
—In this method, the cyclomatic complexity V (G) for a graph G is given by the
following expression:

V(G) = Total number of non-overlapping bounded areas + 1

In the program’s control flow graph G, any region enclosed by nodes and edges can
be called as a bounded area. This is an easy way to determine the McCabe’s cyclomatic
complexity. But, what if the graph G is not planar (i.e., how ever you draw the graph,
two or more edges always intersect). Actually, it can be shown that control flow
representation of structured programs always yields planar graphs. But, presence of
GOTO’s can easily add intersecting edges. Therefore, for non-structured programs, this
way of computing the McCabe’s cyclomatic complexity does not apply.

The number of bounded areas in a CFG increases with the number of decision
statements and loops. Therefore, the McCabe’s metric provides a quantitative measure
of testing difficulty and the ultimate reliability of a program. Consider the CFG example
shown in Figure 10.7. From a visual examination of the CFG the number of bounded
areas is 2. Therefore the cyclomatic complexity, computed with this method is also
2+1=3. This method provides a very easy way of computing the cyclomatic complexity
of CFGs, just from a visual examination of the CFG. On the other hand, the method for
computing CFGs can easily be automated. That is, the McCabe’s metric computations
methods 1 and 3 can be easily coded into a program

that can be used to automatically determine the cyclomatic complexities of arbitrary
programs.

Method 3: The cyclomatic complexity of a program can also be easily computed by
computing the number of decision and loop statements of the program. If N is the
number of decision and loop statements of a program, then the McCabe’s metric is
equal to N + 1.

How is path testing carried out by using computed McCabe’s cyclomatic metric
value?

Knowing the number of basis paths in a program does not make it any easier to
design test cases for path coverage, only it gives an indication of the minimum
number of test cases required for path coverage. For the CFG of a moderately
complex program segment of say 20 nodes and 25 edges, you may need several
days of effort to identify all the linearly independent paths in it and to design the
test cases. It is therefore impractical to require the test designers to identify all
the linearly independent paths in a code, and then design the test cases to force
execution along each of the identified paths. In practice, for path testing, usually
the tester keeps on forming test cases with random data and executes those
until the required coverage is achieved. A testing tool such as a dynamic program
analyser (see Section 10.8.2) is used to determine the percentage of linearly
independent paths covered by the test cases that have been executed so far. If
the percentage of linearly independent paths covered is below 90 per cent, more
test cases (with random inputs) are added to increase the path coverage.
Normally, it is not practical to target achievement of 100 per cent path coverage,
since, the McCabe’s metric is only an upper bound and does not give the exact
number of paths.

Steps to carry out path coverage-based testing

The following is the sequence of steps that need to be undertaken for deriving the
path coverage-based test cases for a program:

3. Draw control flow graph for the program.

4. Determine the McCabe’s metric V(G).

5. Determine the cyclomatic complexity. This gives the minimum number of test
cases required to achieve path coverage.

6. repeat

Test using a randomly designed set of test cases.
Perform dynamic analysis to check the path coverage achieved. until at
least 90 per cent path coverage is achieved.

Uses of McCabe’s cyclomatic complexity metric

Beside its use in path testing, cyclomatic complexity of programs has many other
interesting applications such as the following:

Estimation of structural complexity of code: McCabe’s cyclomatic complexity is a
measure of the structural complexity of a program. The reason for this is that it is
computed based on the code structure (number of decision and iteration constructs
used). Intuitively, the McCabe’s complexity metric correlates with the difficulty level of
understanding a program, since one understands a program by understanding the
computations carried out along all independent paths of the program.

In view of the above result, from the maintenance perspective, it makes good sense
to limit the cyclomatic complexity of the different functions to some reasonable value.
Good software development organisations usually restrict the cyclomatic complexity of
different functions to a maximum value of ten or so. This is in contrast to the
computational complexity that is based on the execution of the program statements.

Estimation of testing effort: Cyclomatic complexity is a measure of the maximum
number of basis paths. Thus, it indicates the minimum number of test cases required to
achieve path coverage. Therefore, the testing effort and the time required to test a
piece of code satisfactorily is proportional to the cyclomatic complexity of the code. To
reduce testing effort, it is necessary to restrict the cyclomatic complexity of every
function to seven.

Estimation of program reliability: Experimental studies indicate there exists a clear
relationship between the McCabe’s metric and the number of errors latent in the code
after testing. This relationship exists possibly due to the correlation of cyclomatic
complexity with the structural complexity of code. Usually the larger is the structural
complexity, the more difficult it is to test and debug the code.

Data Flow-based Testing

Data flow based testing method selects test paths of a program

Cyclomatic complexity of a program is a measure of the psychological complexity or
the level of difficulty in understanding the program.

according to the definitions and uses of different variables in a program.
Consider a program P . For a statement numbered S of P , let DEF(S) = {X

/statement S contains a definition of X } and USES(S)= {X /statement S
contains a use of X }

For the statement S: a=b+c;, DEF(S)={a}, USES(S)={b, c}. The definition of variable X
at statement S is said to be live at statement S1 , if there exists a path from statement
S to statement S1 which does not contain any definition of X .

All definitions criterion is a test coverage criterion that requires that an adequate
test set should cover all definition occurrences in the sense that, for each definition
occurrence, the testing paths should cover a path through which the definition reaches
a use of the definition. All use criterion requires that all uses of a definition should be
covered. Clearly, all-uses criterion is stronger than all-definitions criterion. An even
stronger criterion is all definition-use-paths criterion, which requires the coverage of
all possible definition-use paths that either are cycle-free or have only simple cycles. A
simple cycle is a path in which only the end node and the start node are the same.

The definition-use chain (or DU chain) of a variable X is of the form [X, S, S1], where S
and S1 are statement numbers, such that X ◻ DEF(S) and X ◻ USES(S1), and the
definition of X in the statement S is live at statement S1 . One simple data flow testing
strategy is to require that every DU chain be covered at least once. Data flow testing
strategies are especially useful for testing programs containing nested if and loop
statements.

Mutation Testing

All white-box testing strategies that we have discussed so far, are coverage-based
testing techniques. In contrast, mutation testing is a fault-based testing technique in the
sense that mutation test cases are designed to help detect specific types of faults in a
program. In mutation testing, a program is first tested by using an initial test suite
designed by using various white box testing strategies that we have discussed. After the
initial testing is complete, mutation testing can be taken up.

The idea behind mutation testing is to make a few arbitrary changes to a program at
a time. Each time the program is changed, it is called a mutated program and the
change effected is called a mutant. An underlying assumption behind mutation testing
is that all programming errors can be

expressed as a combination of simple errors. A mutation operator makes specific
changes to a program. For example, one mutation operator may randomly delete a
program statement. A mutant may or may not cause an error in the program. If a
mutant does not introduce any error in the program, then the original program and the
mutated program are called equivalent programs.

A mutated program is tested against the original test suite of the program. If there
exists at least one test case in the test suite for which a mutated program yields an
incorrect result, then the mutant is said to be dead, since the error introduced by the
mutation operator has successfully been detected by the test suite. If a mutant remains
alive even after all the test cases have been exhausted, the test suite is enhanced to kill
the mutant. However, it is not this straightforward. Remember that there is a
possibility of a mutated program to be an equivalent program. When this is the case, it
is futile to try to design a test case that would identify the error.

An important advantage of mutation testing is that it can be automated to a great
extent. The process of generation of mutants can be automated by predefining a set of
primitive changes that can be applied to the program. These primitive changes can be
simple program alterations such as—deleting a statement, deleting a variable
definition, changing the type of an arithmetic operator (e.g., + to -), changing a logical
operator (and to or) changing the value of a constant, changing the data type of a
variable, etc. A major pitfall of the mutation-based testing approach is that it is
computationally very expensive, since a large number of possible mutants can be
generated.

Mutation testing involves generating a large number of mutants. Also each mutant
needs to be tested with the full test suite. Obviously therefore, mutation testing is not
suitable for manual testing. Mutation testing is most suitable to be used in conjunction
of some testing tool that should automatically generate the mutants and run the test
suite automatically on each mutant. At present, several test tools are available that
automatically generate mutants for a given program.

DEBUGGING

After a failure has been detected, it is necessary to first identify the program
statement(s) that are in error and are responsible for the failure, the error can
then be fixed. In this Section, we shall summarise the important approaches that
are available to identify the error locations. Each of these approaches has
its own advantages and

disadvantages and therefore each will be useful in appropriate circumstances.
We also provide some guidelines for effective debugging.

Debugging Approaches

The following are some of the approaches that are popularly adopted by the
programmers for debugging:

Brute force method

This is the most common method of debugging but is the least efficient method. In
this approach, print statements are inserted throughout the program to print
the intermediate values with the hope that some of the printed values will help
to identify the statement in error. This approach becomes more systematic with
the use of a symbolic debugger (also called a source code debugger), because
values of different variables can be easily checked and break points and watch
points can be easily set to test the values of variables effortlessly. Single
stepping using a symbolic debugger is another form of this approach, where the
developer mentally computes the expected result after every source instruction
and checks whether the same is computed by single stepping through the
program.

Backtracking

This is also a fairly common approach. In this approach, starting from the
statement at which an error symptom has been observed, the source code is
traced backwards until the error is discovered. Unfortunately, as the number of
source lines to be traced back increases, the number of potential backward paths
increases and may become unmanageably large for complex programs, limiting
the use of this approach.

Cause elimination method

In this approach, once a failure is observed, the symptoms of the failure (i.e.,
certain variable is having a negative value though it should be positive, etc.) are
noted. Based on the failure symptoms, the causes which could possibly have
contributed to the symptom is developed and tests are conducted to eliminate
each. A related technique of identification of the error from the error symptom is
the software fault tree analysis.

Program slicing

This technique is similar to back tracking. In the backtracking approach, one often
has to examine a large number of statements. However, the search space is
reduced by defining slices. A slice of a program for a particular variable and at a
particular statement is the set of source lines preceding this statement that can
influence the value of that variable [Mund2002]. Program slicing makes use of
the fact that an error in the value of a variable can be caused by the statements
on which it is data dependent.

Debugging Guidelines

Debugging is often carried out by programmers based on their ingenuity and
experience. The following are some general guidelines for effective debugging:

 Many times debugging requires a thorough understanding of the program
design. Trying to debug based on a partial understanding of the program design
may require an inordinate amount of effort to be put into debugging even for
simple problems.

 Debugging may sometimes even require full redesign of the system. In such
cases, a common mistakes that novice programmers often make is attempting
not to fix the error but its symptoms.

 One must be beware of the possibility that an error correction may introduce
new errors. Therefore after every round of error-fixing, regression testing (see
Section 10.13) must be carried out.

PROGRAM ANALYSIS TOOLS

A program analysis tool usually is an automated tool that takes either the
source code or the executable code of a program as input and produces reports
regarding several important characteristics of the program, such as its size,
complexity, adequacy of commenting, adherence to programming standards,
adequacy of testing, etc. We can classify various program analysis tools into the
following two broad categories:

 Static analysis tools
 Dynamic analysis tools

These two categories of program analysis tools are discussed in the following
subsection.

Static Analysis Tools

Static program analysis tools assess and compute various characteristics of a
program without executing it. Typically, static analysis tools analyse the
source code to compute certain metrics characterising the source code (such as
size, cyclomatic complexity, etc.) and also report certain analytical conclusions.
These also check the conformance of the code with the prescribed coding
standards. In this context, it displays the following analysis results:

 To what extent the coding standards have been adhered to?
 Whether certain programming errors such as uninitialised variables, mismatch

between actual and formal parameters, variables that are declared but never
used, etc., exist? A list of all such errors is displayed.

Code review techniques such as code walkthrough and code inspection discussed in
Sections 10.2.1 and 10.2.2 can be considered as static analysis methods since those
target to detect errors based on analysing the source code. However, strictly speaking,
this is not true since we are using the term static program analysis to denote
automated analysis tools. On the other hand, a compiler can be considered to be a type
of a static program analysis tool.

A major practical limitation of the static analysis tools lies in their inability to
analyse run-time information such as dynamic memory references using pointer
variables and pointer arithmetic, etc. In a high level programming languages, pointer
variables and dynamic memory allocation provide the capability for dynamic memory
references. However, dynamic memory referencing is a major source of programming
errors in a program.

Static analysis tools often summarise the results of analysis of every function in a
polar chart known as Kiviat Chart. A Kiviat Chart typically shows the analysed values
for cyclomatic complexity, number of source lines, percentage of comment lines,
Halstead’s metrics, etc.

Dynamic Analysis Tools

Dynamic program analysis tools can be used to evaluate several program

characteristics based on an analysis of the run time behaviour of a program. These
tools usually record and analyse the actual behaviour of a program while it is being
executed. A dynamic program analysis tool (also called a dynamic analyser) usually
collects execution trace information by instrumenting the code. Code instrumentation
is usually achieved by inserting additional statements to print the values of certain
variables into a file to collect the execution trace of the program. The instrumented
code when executed, records the behaviour of the software for different test cases.

After a software has been tested with its full test suite and its behaviour recorded,
the dynamic analysis tool carries out a post execution analysis and produces reports
which describe the coverage that has been achieved by the complete test suite for the
program. For example, the dynamic analysis tool can report the statement, branch,
and path coverage achieved by a test suite. If the coverage achieved is not satisfactory
more test cases can be designed, added to the test suite, and run. Further, dynamic
analysis results can help eliminate redundant test cases from a test suite.

Normally the dynamic analysis results are reported in the form of a histogram or pie
chart to describe the structural coverage achieved for different modules of the
program. The output of a dynamic analysis tool can be stored and printed easily to
provide evidence that thorough testing has been carried out.

INTEGRATION TESTING

Integration testing is carried out after all (or at least some of) the modules have been
unit tested. Successful completion of unit testing, to a large extent, ensures that the
unit (or module) as a whole works satisfactorily. In this context, the objective of
integration testing is to detect the errors at the module interfaces (call parameters).
For example, it is checked that no parameter mismatch occurs when one module
invokes the functionality of another module. Thus, the primary objective of integration
testing is to test the module interfaces, i.e., there are no errors in parameter passing,
when one module invokes the functionality of another module.

The objective of integration testing is to check whether the different modules of a
program interface with each other properly.

An important characteristic of a test suite that is computed by a dynamic analysis tool
is the extent of coverage achieved by the test suite.

During integration testing, different modules of a system are integrated in a planned
manner using an integration plan. The integration plan specifies the steps and the
order in which modules are combined to realise the full system. After each integration
step, the partially integrated system is tested.

An important factor that guides the integration plan is the module dependency
graph.

We have already discussed in Chapter 6 that a structure chart (or module
dependency graph) specifies the order in which different modules call each other. Thus,
by examining the structure chart, the integration plan can be developed. Any one (or a
mixture) of the following approaches can be used to develop the test plan:

 Big-bang approach to integration testing
Top-down approach to integration testing
 Bottom-up approach to integration testing
 Mixed (also called sandwiched) approach to integration testing

In the following subsections, we provide an overview of these approaches to
integration testing.

Big-bang approach to integration testing

Big-bang testing is the most obvious approach to integration testing. In this
approach, all the modules making up a system are integrated in a single step. In
simple words, all the unit tested modules of the system are simply linked
together and tested. However, this technique can meaningfully be used only for
very small systems. The main problem with this approach is that once a failure
has been detected during integration testing, it is very difficult to localise the
error as the error may potentially lie in any of the modules. Therefore, debugging
errors reported during big-bang integration testing are very expensive to fix. As
a result, big-bang integration testing is almost never used for large programs.

Bottom-up approach to integration testing

Large software products are often made up of several subsystems. A subsystem
might consist of many modules which communicate among each other through
well-defined interfaces. In bottom-up integration testing, first the modules for
the each subsystem are integrated. Thus, the subsystems can be integrated
separately and independently.

The primary purpose of carrying out the integration testing a subsystem is to test
whether the interfaces among various modules making up the subsystem work
satisfactorily. The test cases must be carefully chosen to exercise the interfaces in all
possible manners.

In a pure bottom-up testing no stubs are required, and only test-drivers are required.
Large software systems normally require several levels of subsystem testing, lower-
level subsystems are successively combined to form higher-level subsystems. The
principal advantage of bottom- up integration testing is that several disjoint
subsystems can be tested simultaneously. Another advantage of bottom-up testing is
that the low-level modules get tested thoroughly, since they are exercised in each
integration step. Since the low-level modules do I/O and other critical functions, testing
the low-level modules thoroughly increases the reliability of the system. A
disadvantage of bottom-up testing is the complexity that occurs when the system is
made up of a large number of small subsystems that are at the same level. This extreme
case corresponds to the big-bang approach.

Top-down approach to integration testing

Top-down integration testing starts with the root module in the structure chart
and one or two subordinate modules of the root module. After the top-level
‘skeleton’ has been tested, the modules that are at the immediately lower layer of
the ‘skeleton’ are combined with it and tested. Top-down integration testing
approach requires the use of program stubs to simulate the effect of lower-level
routines that are called by the routines under test. A pure top-down integration
does not require any driver routines. An advantage of top-down integration
testing is that it requires writing only stubs, and stubs are simpler to write
compared to drivers. A disadvantage of the top-down integration testing
approach is that in the absence of lower-level routines, it becomes difficult to
exercise the top-level routines in the desired manner since the lower level
routines usually perform input/output (I/O) operations.

Mixed approach to integration testing

The mixed (also called sandwiched) integration testing follows a combination of
top-down and bottom-up testing approaches. In top- down approach, testing can
start only after the top-level modules have been coded and unit tested.
Similarly, bottom-up testing can start only

after the bottom level modules are ready. The mixed approach overcomes this
shortcoming of the top-down and bottom-up approaches. In the mixed testing
approach, testing can start as and when modules become available after unit
testing. Therefore, this is one of the most commonly used integration testing
approaches. In this approach, both stubs and drivers are required to be designed.

Phased versus Incremental Integration Testing

Big-bang integration testing is carried out in a single step of integration. In
contrast, in the other strategies, integration is carried out over several steps. In
these later strategies, modules can be integrated either in a phased or
incremental manner. A comparison of these two strategies is as follows:

 In incremental integration testing, only one new module is added to the
partially integrated system each time.

 In phased integration, a group of related modules are added to the partial
system each time.

Obviously, phased integration requires less number of integration steps compared to
the incremental integration approach. However, when failures are detected, it is easier
to debug the system while using the incremental testing approach since the errors can
easily be traced to the interface of the recently integrated module. Please observe that a
degenerate case of the phased integration testing approach is big-bang testing.

TESTING OBJECT-ORIENTED PROGRAMS

During the initial years of object-oriented programming, it was believed that
object-orientation would, to a great extent, reduce the cost and effort incurred
on testing. This thinking was based on the observation that object-orientation
incorporates several good programming features such as encapsulation,
abstraction, reuse through inheritance, polymorphism, etc., thereby chances of
errors in the code is minimised. However, it was soon realised that satisfactory
testing object-oriented programs is much more difficult and requires much more
cost and effort as compared to testing similar procedural programs. The main
reason behind this situation is that various object-oriented features introduce
additional complications and scope of new types of bugs that are

present in procedural programs. Therefore additional test cases are needed to be
designed to detect these. We examine these issues as well as some other basic
issues in testing object-oriented programs in the following subsections.

What is a Suitable Unit for Testing Object-oriented
Programs?
For procedural programs, we had seen that procedures are the basic units of
testing. That is, first all the procedures are unit tested. Then various tested procedures
are integrated together and tested. Thus, as far as procedural programs are concerned,
procedures are the basic units of testing. Since methods in an object-oriented program
are analogous to procedures in a procedural program, can we then consider the
methods of object-oriented programs as the basic unit of testing? Weyuker studied this
issue and postulated his anticomposition axiom as follows:

The main intuitive justification for the anticomposition axiom is the following. A
method operates in the scope of the data and other methods of its object. That is, all the
methods share the data of the class. Therefore, it is necessary to test a method in the
context of these. Moreover, objects can have significant number of states. The
behaviour of a method can be different based on the state of the corresponding object.
Therefore, it is not enough to test all the methods and check whether they can be
integrated satisfactorily. A method has to be tested with all the other methods and
data of the corresponding object. Moreover, a method needs to be tested at all the
states that the object can assume. As a result, it is improper to consider a method as the
basic unit of testing an object-oriented program.

Thus, in an object oriented program, unit testing would mean testing each object in
isolation. During integration testing (called cluster testing in the object-oriented
testing literature) various unit tested objects are integrated and tested. Finally, system-
level testing is carried out.

Do Various Object-orientation Feature Make Testing Easy?

In this section, we discuss the implications of different object-orientation features
in testing.

Encapsulation: We had discussed in Chapter 7 that the encapsulation feature helps in
data abstraction, error isolation, and error prevention. However, as far as testing is

Adequate testing of individual methods does not ensure that a class has been
satisfactorily tested.

An object is the basic unit of testing of object-oriented programs.

concerned, encapsulation is not an obstacle to testing, but leads to difficulty during
debugging. Encapsulation prevents the tester from accessing the data internal to an
object. Of course, it is possible that one can require classes to support state reporting
methods to print out all the data internal to an object. Thus, the encapsulation feature
though makes testing difficult, the difficulty can be overcome to some extent through
use of appropriate state reporting methods.

Inheritance: The inheritance feature helps in code reuse and was expected to simplify
testing. It was expected that if a class is tested thoroughly, then the classes that are
derived from this class would need only incremental testing of the added features.
However, this is not the case.

The reason for this is that the inherited methods would work in a new context (new
data and method definitions). As a result, correct behaviour of a method at an upper
level, does not guarantee correct behaviour at a lower level. Therefore, retesting of
inherited methods needs to be followed as a rule, rather as an exception.

Dynamic binding: Dynamic binding was introduced to make the code compact,
elegant, and easily extensible. However, as far as testing is concerned all possible
bindings of a method call have to be identified and tested. This is not easy since the
bindings take place at run-time.

Object states: In contrast to the procedures in a procedural program, objects store
data permanently. As a result, objects do have significant states. The behaviour of an
object is usually different in different states. That is, some methods may not be active
in some of its states. Also, a method may act differently in different states. For
example, when a book has been issued out in a library information system, the book
reaches the issuedOut state. In this state, if the issue method is invoked, then it may not
exhibit its normal behaviour.

In view of the discussions above, testing an object in only one of its states is not
enough. The object has to be tested at all its possible states. Also,

Even if the base class class has been thoroughly tested, the methods inherited from
the base class need to be tested again in the derived class.

whether all the transitions between states (as specified in the object model) function
properly or not should be tested. Additionally, it needs to be tested that no extra
(sneak) transitions exist, neither are there extra states present other than those
defined in the state model. For state-based testing, it is therefore beneficial to have the
state model of the objects, so that the conformance of the object to its state model can
be tested.

Why are Traditional Techniques Considered Not Satisfactory for Testing Object-oriented
Programs?

We have already seen that in traditional procedural programs, procedures are
the basic unit of testing. In contrast, objects are the basic unit of testing for
object-oriented programs. Besides this, there are many other significant
differences as well between testing procedural and object-oriented programs.
For example, statement coverage-based testing which is popular for testing
procedural programs is not meaningful for object-oriented programs. The reason
is that inherited methods have to be retested in the derived class. In fact, the
different object- oriented features (inheritance, polymorphism, dynamic binding,
state-based behaviour, etc.) require special test cases to be designed compared
to the traditional testing as discussed in Section
10.11.4. The various object-orientation features are explicit in the design
models, and it is usually difficult to extract from and analysis of the source code.
As a result, the design model is a valuable artifact for testing object-oriented
programs. Test cases are designed based on the design model. Therefore, this
approach is considered to be intermediate between a fully white-box and a fully
black-box approach, and is called a grey-box approach. Please note that grey-box
testing is considered important for object-oriented programs. This is in contrast
to testing procedural programs.

Grey-Box Testing of Object-oriented Programs

As we have already mentioned, model-based testing is important for object- oriented
programs, as these test cases help detect bugs that are specific to the object-orientation
constructs.

For object-oriented programs, several types of test cases can be designed based on
the design models of object-oriented programs. These are called the grey-box test
cases.

The following are some important types of grey-box testing that can be carried on
based on UML models:

State-model-based testing

State coverage: Each method of an object are tested at each state of the object.

State transition coverage: It is tested whether all transitions depicted in the state
model work satisfactorily.

State transition path coverage: All transition paths in the state model are tested.

Use case-based testing

Scenario coverage: Each use case typically consists of a mainline scenario and
several alternate scenarios. For each use case, the mainline and all alternate
sequences are tested to check if any errors show up.

Class diagram-based testing

Testing derived classes: All derived classes of the base class have to be
instantiated and tested. In addition to testing the new methods defined in the
derivec. lass, the inherited methods must be retested.

Association testing: All association relations are tested.

Aggregation testing: Various aggregate objects are created and tested.

Sequence diagram-based testing

Method coverage: All methods depicted in the sequence diagrams are covered.
Message path coverage: All message paths that can be constructed from the
sequence diagrams are covered.

Integration Testing of Object-oriented Programs

There are two main approaches to integration testing of object-oriented
programs:

• Thread-based

• Use based

Thread-based approach: In this approach, all classes that need to collaborate to
realise the behaviour of a single use case are integrated and tested. After all the
required classes for a use case are integrated and tested,

another use case is taken up and other classes (if any) necessary for execution of the
second use case to run are integrated and tested. This is continued till all use cases
have been considered.

Use-based approach: Use-based integration begins by testing classes that either need
no service from other classes or need services from at most a few other classes. After
these classes have been integrated and tested, classes that use the services from the
already integrated classes are integrated and tested. This is continued till all the classes
have been integrated and tested.

SYSTEM TESTING

After all the units of a program have been integrated together and tested, system
testing is taken up.

The system testing procedures are the same for both object-oriented and procedural
programs, since system test cases are designed solely based on the SRS document and
the actual implementation (procedural or object- oriented) is immaterial.

There are essentially three main kinds of system testing depending on who carries
out testing:

1. Alpha Testing: Alpha testing refers to the system testing carried out by the
test team within the developing organisation.

2. Beta Testing: Beta testing is the system testing performed by a select group of
friendly customers.

3. Acceptance Testing: Acceptance testing is the system testing performed by
the customer to determine whether to accept the delivery of the system.

In each of the above types of system tests, the test cases can be the same, but the
difference is with respect to who designs test cases and carries out testing.

Before a fully integrated system is accepted for system testing, smoke testing is
performed. Smoke testing is done to check whether at least the

System tests are designed to validate a fully developed system to assure that it meets
its requirements. The test cases are therefore designed solely based on the SRS
document.

The system test cases can be classified into functionality and performance test cases.

main functionalities of the software are working properly. Unless the software is stable
and at least the main functionalities are working satisfactorily, system testing is not
undertaken.

The functionality tests are designed to check whether the software satisfies the
functional requirements as documented in the SRS document. The performance tests,
on the other hand, test the conformance of the system with the non-functional
requirements of the system. We have already discussed how to design the functionality
test cases by using a black-box approach (in Section 10.5 in the context of unit testing).
So, in the following subsection we discuss only smoke and performance testing.

Smoke Testing

Smoke testing is carried out before initiating system testing to ensure that system
testing would be meaningful, or whether many parts of the software would fail.
The idea behind smoke testing is that if the integrated program cannot pass even
the basic tests, it is not ready for a vigorous testing. For smoke testing, a few test
cases are designed to check whether the basic functionalities are working. For
example, for a library automation system, the smoke tests may check whether
books can be created and deleted, whether member records can be created and
deleted, and whether books can be loaned and returned.

Performance Testing

Performance testing is an important type of system testing.

There are several types of performance testing corresponding to various types of
non-functional requirements. For a specific system, the types of performance testing to
be carried out on a system depends on the different non-functional requirements of the
system documented in its SRS document. All performance tests can be considered as
black-box tests.

Stress testing

Stress testing is also known as endurance testing. Stress testing evaluates
system performance when it is stressed for short periods of time. Stress tests are
black-box tests which are designed to impose a range of abnormal and even
illegal input conditions so as to stress the

Performance testing is carried out to check whether the system meets the non-
functional requirements identified in the SRS document.

capabilities of the software. Input data volume, input data rate, processing time,
utilisation of memory, etc., are tested beyond the designed capacity. For example,
suppose an operating system is supposed to support fifteen concurrent
transactions, then the system is stressed by attempting to initiate fifteen or more
transactions simultaneously. A real-time system might be tested to determine
the effect of simultaneous arrival of several high-priority interrupts.

Stress testing is especially important for systems that under normal circumstances
operate below their maximum capacity but may be severely stressed at some peak
demand hours. For example, if the corresponding non- functional requirement states
that the response time should not be more than twenty secs per transaction when sixty
concurrent users are working, then during stress testing the response time is checked
with exactly sixty users working simultaneously.

Volume testing

Volume testing checks whether the data structures (buffers, arrays, queues,
stacks, etc.) have been designed to successfully handle extraordinary situations.
For example, the volume testing for a compiler might be to check whether the
symbol table overflows when a very large program is compiled.

Configuration testing

Configuration testing is used to test system behaviour in various hardware and
software configurations specified in the requirements. Sometimes systems are
built to work in different configurations for different users. For instance, a
minimal system might be required to serve a single user, and other extended
configurations may be required to serve additional users during configuration
testing. The system is configured in each of the required configurations and
depending on the specific customer requirements, it is checked if the system
behaves correctly in all required configurations.

Compatibility testing

This type of testing is required when the system interfaces with external systems
(e.g., databases, servers, etc.). Compatibility aims to check whether the interfaces
with the external systems are performing as required. For instance, if the system
needs to communicate with a large

database system to retrieve information, compatibility testing is required to
test the speed and accuracy of data retrieval.

Regression testing

This type of testing is required when a software is maintained to fix some bugs
or enhance functionality, performance, etc. Regression testing is also discussed
in Section 10.13.

Recovery testing

Recovery testing tests the response of the system to the presence of faults, or loss
of power, devices, services, data, etc. The system is subjected to the loss of the
mentioned resources (as discussed in the SRS document) and it is checked if the
system recovers satisfactorily. For example, the printer can be disconnected to
check if the system hangs. Or, the power may be shut down to check the extent of
data loss and corruption.

Maintenance testing

This addresses testing the diagnostic programs, and other procedures that are
required to help maintenance of the system. It is verified that the artifacts exist
and they perform properly.

Documentation testing

It is checked whether the required user manual, maintenance manuals, and
technical manuals exist and are consistent. If the requirements specify the types
of audience for which a specific manual should be designed, then the manual is
checked for compliance of this requirement.

Usability testing

Usability testing concerns checking the user interface to see if it meets all user
requirements concerning the user interface. During usability testing, the display
screens, messages, report formats, and other aspects relating to the user
interface requirements are tested. A GUI being just being functionally correct is
not enough. Therefore, the GUI has to be checked against the checklist we
discussed in Sec. 9.5.6.

Security testing

Security testing is essential for software that handle or process confidential data that is
to be gurarded against pilfering. It needs to be tested whether the system is fool-proof
from security attacks such as intrusion by hackers. Over the last few years, a large
number of security testing techniques have been proposed, and these include password
cracking, penetration testing, and attacks on specific ports, etc.

Error Seeding

Sometimes customers specify the maximum number of residual errors that can be
present in the delivered software. These requirements are often expressed in
terms of maximum number of allowable errors per line of source code. The error
seeding technique can be used to estimate the number of residual errors in a
software.

Error seeding, as the name implies, it involves seeding the code with some known
errors. In other words, some artificial errors are introduced (seeded) into the program.
The number of these seeded errors that are detected in the course of standard testing
is determined. These values in conjunction with the number of unseeded errors
detected during testing can be used to predict the following aspects of a program:

 The number of errors remaining in the product.
The effectiveness of the testing strategy.

Let N be the total number of defects in the system, and let n of these defects be found
by testing.

Let S be the total number of seeded defects, and let s of these defects be found during
testing. Therefore, we get:

Defects still remaining in the program after testing can be given by:

Error seeding works satisfactorily only if the kind seeded errors and their frequency

of occurrence matches closely with the kind of defects that actually exist. However, it is
difficult to predict the types of errors that exist in a software. To some extent, the
different categories of errors that are latent

and their frequency of occurrence can be estimated by analyzing historical data
collected from similar projects. That is, the data collected is regarding the types and the
frequency of latent errors for all earlier related projects. This gives an indication of the
types (and the frequency) of errors that are likely to have been committed in the
program under consideration. Based on these data, the different types of errors with
the required frequency of occurrence can be seeded.

SOME GENERAL ISSUES ASSOCIATED WITH TESTING

In this section, we shall discuss two general issues associated with testing. These
are—how to document the results of testing and how to perform regression
testing.

Test documentation

A piece of documentation that is produced towards the end of testing is the test
summary report. This report normally covers each subsystem and represents a
summary of tests which have been applied to the subsystem and their outcome.
It normally specifies the following:

 What is the total number of tests that were applied to a subsystem. Out of
the total number of tests how many tests were successful.
 How many were unsuccessful, and the degree to which they were unsuccessful,

e.g., whether a test was an outright failure or whether some of the expected
results of the test were actually observed.

Regression testing

Regression testing spans unit, integration, and system testing. Instead, it is a
separate dimension to these three forms of testing. Regression testing is the
practice of running an old test suite after each change to the system or after each
bug fix to ensure that no new bug has been introduced due to the change or the
bug fix. However, if only a few statements are changed, then the entire test suite
need not be run — only those test cases that test the functions and are likely
to be affected by the change need to be run. Whenever a software is changed to
either fix a bug, or enhance or remove a feature, regression testing is carried out.

 In this chapter we discussed the coding and testing phases of the software life
cycle.

 Most software development organisations formulate their own coding standards
and expect their engineers to adhere to them. On the other hand, coding
guidelines serve as general suggestions to programmers regarding good
programming styles, but the implementation of the guidelines is left to the
discretion to the individual engineers.

 Code review is an efficient way of removing errors as compared to testing,
because code review identifies errors whereas testing identifies failures.
Therefore, after identifying failures, additional efforts (debugging) must be
done to locate and fix the errors.

 Exhaustive testing of almost any non-trivial system is impractical. Also, random
selection of test cases is inefficient since many test cases become redundant as
they detect the same type of errors. Therefore, we need to design an minimal set
of test cases that would expose as many errors as possible.

 There are two well-known approaches to testing—black-box testing and
white-box testing. Black box testing is also known as functional testing.
Designing test cases for black box testing does not require any knowledge about
how the functions have been designed and implemented. On the other hand,
white-box testing requires knowledge about internals of the software.

 Object-oriented features complicate the testing process as test cases have to be
designed to detect bugs that are associated with these new types of features
that are specific to object-orientation programs.

 We discussed some important issues in integration and system testing. We
observed that the system test suite is designed based on the SRS document. The
two major types of system testing are functionality testing and performance
testing. The functionality test cases are designed based on the functional
requirements and the performance test cases are design to test the compliance
of the system to test the non-functional requirements documented in the SRS
document.

 MODULE-IV

Basic concepts in software reliability

Software reliability refers to the probability of a program operating without failures for a
specified time in a given environment, and is a crucial aspect of software quality, focusing
on the dynamic, operational behavior of a program rather than its static design.

Software Reliability Measures
Software reliability measures, also known as software reliability metrics, are used to
quantify the reliability of a software product. These metrics help developers, testers, and
stakeholders understand how likely the software is to perform its intended functions
without failure. Here are some of the most common and important measures:
Basic Measures

 Mean Time To Failure (MTTF):
o This measures the average time between consecutive failures.
o It's particularly relevant for systems that are expected to run for extended

periods.
o A higher MTTF indicates better reliability.
o Formula: MTTF = Total operating time / Number of failures

 Mean Time To Repair (MTTR):
o This measures the average time it takes to repair a software system after a

failure.
o A lower MTTR indicates better maintainability and, indirectly, better

reliability (as the system is down for a shorter time).
 Mean Time Between Failures (MTBF):

o This is the average time between two successive failures.

o For repairable systems, it's the sum of MTTF and MTTR.

o Formula: MTBF = MTTF + MTTR

 Rate of Occurrence of Failure (ROCOF):

o This measures the frequency of failures in a given time interval.
o It's calculated as the number of failures divided by the time of exposure.

 Probability of Failure on Demand (POFOD):
o This measures the likelihood that the system will fail when a service

request is made.
o It's useful for systems where services are requested intermittently.

o Formula: POFOD = Number of failures / Number of requests
 Availability:

o This measures the degree to which a system is operational and accessible
when required.

o It's often expressed as a percentage.
o Availability is influenced by both MTTF and MTTR.
o Formula: Availability = MTTF / (MTTF + MTTR)

Reliability Growth Models – Software Engineering
The reliability growth group of models measures and predicts the improvement of
reliability programs through the testing process. The growth model represents the
reliability or failure rate of a system as a function of time or the number of test cases.
Models included in this group are as follows.

1. Coutinho Model – Coutinho adapted the Duane growth model to represent the
software testing process. Coutinho plotted the cumulative number of deficiencies
discovered and the number of correction actions made vs. the cumulative testing
weeks on log-log paper. Let N(t) denote the cumulative number of failures and let
t be the total testing time. The failure rate, λ λ (t), the model can be expressed
as[Tex]$$\lambda (t)=\frac{N(t)}{t} $$ $$ =\beta_0t^{-\beta_1}$$
[/Tex]where β0andβ1 β0andβ1 are the model parameters. The least squares
method can be used to estimate the parameters of this model.

2. Wall and Ferguson Model – Wall and Ferguson proposed a model similar to the
Weibull growth model for predicting the failure rate of software during testing.
The cumulative number of failures at time t, m(t), can be expressed
as[Tex]$$m(t)=a_0[b(t)]^\beta $$ [/Tex]where α0andα1 α0andα1 are the
unknown parameters. The function b(t) can be obtained as the number of test
cases or total testing time. Similarly, the failure rate function at time t is given
by [Tex]$$\lambda (t)= {m^’ (t)} = {a_0\beta b^’ (t){[b(t)]^{\beta -1}}}$$
[/Tex]Wall and Ferguson tested this model using some software failure data and
observed that failure data correlate well with the model

Reliability growth models are mathematical models used to predict the reliability
of a system over time. They are commonly used in software engineering to
predict the reliability of software systems and to guide the testing and
improvement process.

Types of reliability growth models:

1. Non-homogeneous Poisson Process (NHPP) Model: This model is based on the
assumption that the number of failures in a system follows a Poisson distribution.
It is used to model the reliability growth of a system over time and to predict the

number of failures that will occur in the future.

2. Duane Model: This model is based on the assumption that the rate of failure of a
system decreases over time as the system is improved. It is used to model the
reliability growth of a system over time and to predict the reliability of the system
at any given time.

3. Gooitzen Model: This model is based on the assumption that the rate of failure of a
system decreases over time as the system is improved, but that there may be
periods of time where the rate of failure increases. It is used to model the
reliability growth of a system over time and to predict the reliability of the system
at any given time.

4. Littlewood Model: This model is based on the assumption that the rate of failure
of a system decreases over time as the system is improved, but that there may be
periods of time where the rate of failure remains constant. It is used to model the
reliability growth of a system over time and to predict the reliability of the system
at any given time.

5. Reliability growth models are useful tools for software engineers, as they can help
to predict the reliability of a system over time and to guide the testing and
improvement process. They can also help organizations to make informed
decisions about the allocation of resources, and to prioritize improvements to the
system.

6. It is important to note that reliability growth models are only predictions, and
actual results may differ from the predictions. Factors such as changes in the
system, changes in the environment, and unexpected failures can impact the
accuracy of the predictions.

Advantages of Reliability Growth Models:

1. Predicting Reliability: Reliability growth models are used to predict the reliability
of a system over time, which can help organizations make informed decisions
about the allocation of resources and the prioritization of improvements to the
system.

2. Guiding the Testing Process: Reliability growth models can be used to guide the
testing process, by helping organizations determine which tests should be run,
and when they should be run, in order to maximize the improvement of the
system’s reliability.

3. Improving the Allocation of Resources: Reliability growth models can help
organizations to make informed decisions about the allocation of resources, by
providing an estimate of the expected reliability of the system over time, and by

helping to prioritize improvements to the system.

4. Identifying Problem Areas: Reliability growth models can help organizations to
identify problem areas in the system, and to focus their efforts on improving these
areas in order to improve the overall reliability of the system.

Disadvantages of Reliability Growth Models:

1. Predictive Accuracy: Reliability growth models are only predictions, and actual
results may differ from the predictions. Factors such as changes in the system,
changes in the environment, and unexpected failures can impact the accuracy of
the predictions.

2. Model Complexity: Reliability growth models can be complex, and may require a
high level of technical expertise to understand and use effectively.

3. Data Availability: Reliability growth models require data on the system’s
reliability, which may not be available or may be difficult to obtain.

SOFTWARE MAINTENANCE

Many students and practising engineers have a preconceived bias against software
maintenanc e work. The mention of the word maintenance brings up the image of a
screw driver, wielding mechanic with soiled hands holding onto a bagful of spare parts.
It would be the objective of this chapter to clear up this misnomer, provide some
intuitive understanding of the software maintenance projects, and to familiarise you
with the latest techniques in software maintenance.

Software maintenance denotes any changes made to a software product after it has
been delivered to the customer. Maintenance is inevitable for almost any kind of
product. However, most products need maintenance due to the wear and tear caused
by use. On the other hand, software products do not need maintenance on this count,
but need maintenance to correct errors, enhance features, port to new platforms, etc.

In Section 13.1, we examine some general issues concerning maintenance projects. In
Section 13.2, we discuss some basic ideas about software reverse engineering. In
Section 13.3 we discuss two software maintenance process models which attempt to
systematise the software development effort and finally we discuss some concepts
involved in cost estimation of maintenance efforts.

13.1 CHARACTERISTICS OF SOFTWARE MAINTENANCE

In this section, we first classify the different maintenance efforts into a few classes.
Next, we discuss some general characteristics of the maintenance projects. We also
discuss some special problems associated with maintenance projects.

Software maintenance is becoming an important activity of a large number of
organisations. This is no surprise, given the rate of hardware obsolescence, the
immortality of a software product per se, and the demand of the usercommunity
to see the existing software products run on newer platforms, run in newer
environments, and/or with enhanced features. When the hardware platform changes,
and a software product performs some low-level functions, maintenance is necessary.
Also, whenever the support environment of a software product changes, the software
product requires rework to cope up with the newer interface. For instance, a software
product may need to be maintained when the operating system changes. Thus, every
software product continues to evolve after its development through maintenance
efforts.

Types of Software Maintenance

There are three types of software maintenance, which are described as follows:

Corrective: Corrective maintenance of a software product is necessary either to rectify
the bugs observed while the system is in use.

Adaptive: A software product might need maintenance when the customers need the
product to run on new platforms, on new operating systems, or when they need the
product to interface with new hardware or software.

Perfective: A software product needs maintenance to support the new features that
users want it to support, to change different functionalities of the system according to
customer demands, or to enhance the performance of the system.

Characteristics of Software Evolution

Lehman and Belady have studied the characteristics of evolution of several
software products [1980]. They have expressed their observations in the form
of laws. Their important laws are presented in the following subsection. But a
word of caution here is that these are generalizations and may not be applicable
to specific cases and also most of these observations concern large software
projects and may not be appropriate for the maintenance and evolution of very
small products.

Lehman’s first law: A software product must change continually or become
progressively less useful. Every software product continues to evolve after its
development through maintenance efforts. Larger products stay in operation for longer
times because of higher replacement costs and therefore tend to incur higher
maintenance efforts. This law clearly shows that every product irrespective of how
well designed must undergo maintenance. In fact, when a product does not need any
more maintenance, it is a sign that the product is about to be retired/discarded. This is
in contrast to the common intuition that only badly designed products need

maintenance. In fact, good products are maintained and bad products are thrown away.

Lehman’s second law: The structure of a program tends to degrade as more and
more maintenance is carried out on it. The reason for the degraded structure is that
when you add a function during maintenance, you build on top of an existing program,
often in a way that the existing program was not intended to support. If you do not
redesign the system, the additions will be more complex that they should be. Due to
quick-fix solutions, in addition to degradation of structure, the documentations become
inconsistent and become less helpful as more and more maintenance is carried out.

Lehman’s third law: Over a program’s lifetime, its rate of development is
approximately constant. The rate of development can be quantified in terms of the
lines of code written or modified. Therefore this law states that the rate at which
code is written or modified is approximately the same during development and
maintenance.

Special Problems Associated with Software Maintenance

Software maintenance work currently is typically much more expensive than what it
should be and takes more time than required. The reasons for this situation are the
following:
Software maintenance work in organizations is mostly carried out using ad hoc
techniques. The primary reason being that software maintenance is one of the most
neglected areas of software engineering. Even though software maintenance is fast
becoming an important area of work for many companies as the software products of
yester year’s age, still software maintenance is mostly being carried out as fire-fighting
operations, rather than through systematic and planned activities.

Software maintenance has a very poor image in industry. Therefore, an organization
often cannot employ bright engineers to carry out maintenance work. Even though
maintenance suffers from a poor image, the work involved is often more challenging
than development work. During maintenance it is necessary to thoroughly understand
someone else’s work, and then carry out the required modifications and extensions.

Another problem associated with maintenance work is that the majority of software
products needing maintenance are legacy products. Though the word legacy implies
“aged” software, but there is no agreement on what exactly is a legacy system. It is
prudent to define a legacy system as any software system that is hard to maintain. The
typical problems associated with legacy systems are poor documentation, unstructured
(spaghetti code with ugly control structure), and lack of personnel knowledgeable in the
product. Many of the legacy systems were developed long time back. But, it is possible
that a recently developed system having poor design and documentation can be
considered to be a legacy system.

SOFTWARE REVERSE ENGINEERING

Software reverse engineering is the process of recovering the design and the
requirements specification of a product from an analysis of its code. The purpose of
reverse engineering is to facilitate maintenance work by improving the
understandability of a system and to produce the necessary documents for a legacy
system. Reverse engineering is becoming important, since legacy software products
lack proper documentation, and are highly unstructured. Even well-designed products
become legacy software as their structure degrades through a series of maintenance
efforts.

The first stage of reverse engineering usually focuses on carrying out cosmetic
changes to the code to improve its readability, structure, and understandability,
without changing any of its functionalities. A way to carry out these cosmetic changes
is shown schematically in Figure 13.1. A program can be reformatted using any of the
several available pretty printer programs which layout the program neatly. Many
legacy software products are difficult to comprehend with complex control structure
and unthoughtful variable names. Assigning meaningful variable names is important
because we had seen in Chapter 9 that meaningful variable names are the most
helpful code documentation. All variables, data structures, and functions should be
assigned meaningful names wherever possible. Complex nested conditionals in the
program can be replaced by simpler conditional statements or whenever
appropriate by case statements.

 Figure 13.1: A process model for reverse engineering.

 Figure 13.2: Cosmetic changes carried out before reverse engineering.

After the cosmetic changes have been carried out on a legacy software, the proces of
extracting the code, design, and the requirements specification can begin. These
activities are schematically shown in Figure 13.2. In order to extract the design, a full
understanding of the code is needed. Some automatic tools can be used to derive the
data flow and control flow diagram from the code. The structure chart (module
invocation sequence and data interchange among modules) should also be extracted.
The SRS document can be written once the full code has been thoroughly understood
and the design extracted.

SOFTWARE MAINTENANCE PROCESS MODELS
Before discussing process models for software maintenance, we need to analyse
various activities involved in a typical software maintenance project. The activities
involved in a software maintenance project are not unique and depend on several
factors such as: (i) the extent of modification to the product required, (ii) the
resources available to the maintenance team, (iii) the conditions of the existing
product (e.g., how structured it is, how well documented it is, etc.), (iii) the expected
project risks, etc. When the changes needed to a software product are minor and
straightforward, the code can be directly modified and the changes appropriately
reflected in all the documents.
However, more elaborate activities are required when the required changes are not
so trivial. Usually, for complex maintenance projects for legacy systems, the software
process can be represented by a reverse engineering cycle followed by a forward
engineering cycle with an emphasis on as much reuse as possible from the existing
code and other documents.
Since the scope (activities required) for different maintenance projects vary widely,
no single maintenance process model can be developed to suit every kind of
maintenance project. However, two broad categories of process models can be
proposed.
First model

The first model is preferred for projects involving small reworks where the code is
changed directly and the changes are reflected in the relevant documents later. This
maintenance process is graphically presented in Figure 13.3. In this approach, the

project starts by gathering the requirements for changes. The requirements are next
analyzed to formulate the strategies to be adopted for code change. At this stage, the
association of at least a few members of the original development team goes a long
way in reducing the cycle time, especially for projects involving unstructured and
inadequately documented code. The availability of a working old system to the
maintenance engineers at the maintenance site greatly facilitates the task of the
maintenance team as they get a good insight into the working of the old system and
also can compare the working of their modified system with the old system. Also,
debugging of the re- engineered system becomes easier as the program traces of both
the systems can be compared to localize the bugs.

 Figure 13.3: Maintenance process model 1.

Second model

The second model is preferred for projects where the amount of rework required
is significant. This approach can be represented by a reverse engineering cycle
followed by a forward engineering cycle. Such an approach is also known as
software re-engineering. This process model is depicted in Figure 13.4.

\ Figure 13.5: Empirical estimation of maintenance cost versus percentage rework.

Besides the amount of rework, several other factors might affect the decision
regarding using process model 1 over process model 2 as follows:

 Re-engineering might be preferable for products which exhibit a high failure
rate.

 Re-engineering might also be preferable for legacy products having poor design
and code structure.

ESTIMATION OF MAINTENANCE COST

We had earlier pointed out that maintenance efforts require about 60 per cent of
the total life cycle cost for a typical software product. However, maintenance costs
vary widely from one application domain to another. For embedded systems, the
maintenance cost can be as much as 2 to 4 times the development cost.
Boehm [1981] proposed a formula for estimating maintenance costs as part of his
COCOMO cost estimation model. Boehm’s maintenance cost estimation is made in
terms of a quantity called the annual change traffic (ACT). Boehm defined ACT as
the fraction of a software product’s source instructions which undergo change

during a typical year either through addition or deletion.

Where, KLOCadded is the total kilo lines of source code added during maintenance.
KLOCdeleted is the total KLOC deleted during

Maintenance. Thus, the code that is changed, should be counted in both the code added
and code deleted.

The annual change traffic (ACT) is multiplied with the total development cost to
arrive at the maintenance cost:

Maintenance cost = ACT × Development cost

Most maintenance cost estimation models, however, give only approximate results
because they do not take into account several factors such as experience level of the
engineers, and familiarity of the engineers with the product, hardware requirements,
software complexity, etc.

SOFTWARE REENGINEERING

Re-engineering, also known as software re-engineering, is the process of analyzing,
designing, and modifying existing software systems to improve their quality,
performance, and maintainability.

1. This can include updating the software to work with new hardware or software
platforms, adding new features, or improving the software’s overall design and
architecture.

2. Software re-engineering, also known as software restructuring or software
renovation, refers to the process of improving or upgrading existing software
systems to improve their quality, maintainability, or functionality.

3. It involves reusing the existing software artifacts, such as code, design, and
documentation, and transforming them to meet new or updated requirements.
Objective of Re-engineering
The primary goal of software re-engineering is to improve the quality and
maintainability of the software system while minimizing the risks and costs
associated with the redevelopment of the system from scratch. Software re-
engineering can be initiated for various reasons, such as:

1. To describe a cost-effective option for system evolution.
2. To describe the activities involved in the software maintenance process.
3. To distinguish between software and data re-engineering and to explain the

problems of data re-engineering.
Overall, software re-engineering can be a cost-effective way to improve the quality
and functionality of existing software systems, while minimizing the risks and costs
associated with starting from scratch.

https://www.geeksforgeeks.org/artifact-software-development/
https://www.geeksforgeeks.org/software-engineering-software-maintenance/

Process of Software Re-engineering
The process of software re-engineering involves the following steps:

Process of Software Re-engineering

1. Planning: The first step is to plan the re-engineering process, which involves
identifying the reasons for re-engineering, defining the scope, and establishing the
goals and objectives of the process.

2. Analysis: The next step is to analyze the existing system, including the code,
documentation, and other artefacts. This involves identifying the system’s strengths
and weaknesses, as well as any issues that need to be addressed.

3. Design: Based on the analysis, the next step is to design the new or updated
software system. This involves identifying the changes that need to be made and
developing a plan to implement them.

4. Implementation: The next step is to implement the changes by modifying the
existing code, adding new features, and updating the documentation and other
artefacts.

5. Testing: Once the changes have been implemented, the software system needs to be
tested to ensure that it meets the new requirements and specifications.

6. Deployment: The final step is to deploy the re-engineered software system and

make it available to end-users.
Why Perform Re-engineering?
Re-engineering can be done for a variety of reasons, such as:

1. To improve the software’s performance and scalability: By analyzing the
existing code and identifying bottlenecks, re-engineering can be used to improve the
software’s performance and scalability.

2. To add new features: Re-engineering can be used to add new features or
functionality to existing software.

3. To support new platforms: Re-engineering can be used to update existing
software to work with new hardware or software platforms.

4. To improve maintainability: Re-engineering can be used to improve the
software’s overall design and architecture, making it easier to maintain and update
over time.

5. To meet new regulations and compliance: Re-engineering can be done to ensure
that the software is compliant with new regulations and standards.

6. Improving software quality: Re-engineering can help improve the quality of
software by eliminating defects, improving performance, and enhancing reliability
and maintainability.

7. Updating technology: Re-engineering can help modernize the software system by
updating the technology used to develop, test, and deploy the system.

8. Enhancing functionality: Re-engineering can help enhance the functionality of the
software system by adding new features or improving existing ones.

9. Resolving issues: Re-engineering can help resolve issues related to scalability,

security, or compatibility with other systems.
Steps involved in Re-engineering

1. Inventory Analysis
2. Document Reconstruction
3. Reverse Engineering
4. Code Reconstruction
5. Data Reconstruction
6. Forward Engineering

https://www.geeksforgeeks.org/software-engineering-reverse-engineering/

Steps of Re-Engineering
Re-engineering Cost Factors

1. The quality of the software to be re-engineered.
2. The tool support available for re-engineering.
3. The extent of the required data conversion.
4. The availability of expert staff for re-engineering.

Factors Affecting Cost of Re-engineering
Re-engineering can be a costly process, and there are several factors that can
affect the cost of re-engineering a software system:

1. Size and complexity of the software: The larger and more complex the software
system, the more time and resources will be required to analyze, design, and modify
it.

2. Number of features to be added or modified: The more features that need to be
added or modified, the more time and resources will be required.

3. Tools and technologies used: The cost of re-engineering can be affected by the
tools and technologies used, such as the cost of software development tools and the
cost of hardware and infrastructure.

4. Availability of documentation: If the documentation of the existing system is not
available or is not accurate, then it will take more time and resources to understand
the system.

5. Team size and skill level: The size and skill level of the development team can also
affect the cost of re-engineering. A larger and more experienced team may be able to
complete the project faster and with fewer resources.

6. Location and rate of the team: The location and rate of the development team can
also affect the cost of re-engineering. Hiring a team in a lower-cost location or with
lower rates can help to reduce the cost of re-engineering.

7. Testing and quality assurance: Testing and quality assurance are important
aspects of re-engineering, and they can add significant costs to the project.

8. Post-deployment maintenance: The cost of post-deployment maintenance such as
bug fixing, security updates, and feature additions can also play a role in the cost of
re-engineering.
In summary, the cost of re-engineering a software system can vary depending on a
variety of factors, including the size and complexity of the software, the number of
features to be added or modified, the tools and technologies used, and the
availability of documentation and the skill level of the development team. It’s
important to carefully consider these factors when estimating the cost of re-
engineering a software system.
Advantages of Re-engineering

1. Reduced Risk: As the software is already existing, the risk is less as compared to
new software development. Development problems, staffing problems and
specification problems are the lots of problems that may arise in new software
development.

https://www.geeksforgeeks.org/best-software-development-tools-2024/
https://www.geeksforgeeks.org/what-is-software-development/
https://www.geeksforgeeks.org/what-is-software-development/

2. Reduced Cost: The cost of re-engineering is less than the costs of developing new
software.

3. Revelation of Business Rules: As a system is re-engineered , business rules that
are embedded in the system are rediscovered.

4. Better use of Existing Staff: Existing staff expertise can be maintained and
extended accommodate new skills during re-engineering.

5. Improved efficiency: By analyzing and redesigning processes, re-engineering can
lead to significant improvements in productivity, speed, and cost-effectiveness.

6. Increased flexibility: Re-engineering can make systems more adaptable to
changing business needs and market conditions.

7. Better customer service: By redesigning processes to focus on customer needs, re-
engineering can lead to improved customer satisfaction and loyalty.

8. Increased competitiveness: Re-engineering can help organizations become more
competitive by improving efficiency, flexibility, and customer service.

9. Improved quality: Re-engineering can lead to better quality products and services
by identifying and eliminating defects and inefficiencies in processes.

10. Increased innovation: Re-engineering can lead to new and innovative ways
of doing things, helping organizations to stay ahead of their competitors.

11. Improved compliance: Re-engineering can help organizations to comply
with industry standards and regulations by identifying and addressing areas of non-
compliance.
Disadvantages of Re-engineering
Major architectural changes or radical reorganizing of the systems data
management has to be done manually. Re-engineered system is not likely to be as
maintainable as a new system developed using modern software Re-engineering
methods.

1. High costs: Re-engineering can be a costly process, requiring significant
investments in time, resources, and technology.

2. Disruption to business operations: Re-engineering can disrupt normal business
operations and cause inconvenience to customers, employees and other
stakeholders.

3. Resistance to change: Re-engineering can encounter resistance from employees
who may be resistant to change and uncomfortable with new processes and
technologies.

4. Risk of failure: Re-engineering projects can fail if they are not planned and
executed properly, resulting in wasted resources and lost opportunities.

5. Lack of employee involvement: Re-engineering projects that are not properly
communicated and involve employees, may lead to lack of employee engagement
and ownership resulting in failure of the project.

6. Difficulty in measuring success: Re-engineering can be difficult to measure in
terms of success, making it difficult to justify the cost and effort involved.

7. Difficulty in maintaining continuity: Re-engineering can lead to significant
changes in processes and systems, making it difficult to maintain continuity and

consistency in the organization.

SOFTWARE REUSE
Software products are expensive. Therefore, software project managers are always
worried about the high cost of software development and are desperately looking for
ways to cut development cost. A possible way to reduce development cost is to reuse
parts from previously developed software. In addition to reduced development cost and
time, reuse also leads to higher quality of the developed products since the reusable
components are ensured to have high quality. A reuse approach that is of late gaining
prominence is component-based development. Component-based software development
is different from the traditional software development in the sense that software is
developed by assembling software from off-the-shelf components.

Software development with reuse is very similar to a modern hardware engineer
building an electronic circuit by using standard types of ICs and other components. In
this Chapter, we will review the state of art in software reuse.

14.1 WHAT CAN BE REUSED?

Before discussing the details of reuse techniques, it is important to deliberate
about the kinds of the artifacts associated with software development that can
be reused. Almost all artifacts associated with software development, including
project plan and test plan can be reused. However, the prominent items that can
be effectively reused are:

 Requirements specification
Design
 Code
 Test cases

14.2 WHY ALMOST NO REUSE SO FAR?
A common scenario in many software development industries is explained further.
Engineers working in software development organisations often have a feeling that the
current system that they are developing is similar to the last few systems built.
However, no attention is paid on how not to duplicate what can be reused from
previously developed systems. Everything is being built from scratch. The current
system falls behind schedule and no one has time to figure out how the similarity
between the current system and the systems developed in the past can be exploited.

14.3 BASIC ISSUES IN ANY REUSE PROGRAM
The following are some of the basic issues that must be clearly understood for

starting any reuse program:
 Component creation.
 Component indexing and storing.

Component search.

 Component understanding.
Component adaptation.
 Repository maintenance.

Component creation: For component creation, the reusable components have to be
first identified. Selection of the right kind of components having potential for reuse is
important. In Section 14.4, we discuss domain analysis as a promising technique which
can be used to create reusable components.
Component indexing and storing

Indexing requires classification of the reusable components so that they can be easily
searched when we look for a component for reuse. The components need to be stored in
a relational database management system (RDBMS) or an object-oriented database
system (ODBMS) for efficient access when the number of components becomes large.
Component searching
The programmers need to search for right components matching their requirements in a
database of components. To be able to search components efficiently, the programmers
require a proper method to describe the components that they are looking for.
Component understanding
 The programmers need precise and sufficiently complete understanding of what the
component does to be able to decide whether they can reuse the component. To facilitate
understanding, the components should be well documented and should do something
simple.
Component adaptation
Often, the components may need adaptation before they can be reused, since a selected
component may not exactly fit the problem at hand. However, tinkering with the code is
also not a satisfactory solution because this is very likely to be a source of bugs.
Repository maintenance
A component repository once is created requires continuous maintenance. New
components, as and when created have to be entered into the repository. The faulty
components have to be tracked. Further, when new applications emerge, the older
applications become obsolete. In this case, the obsolete components might have to be
removed from the repository.

EMERGING TRENDS
We had discussed in Chapter 1 that software engineering techniques have in the past
evolved in response to the challenges posed to program development by the changing
environment in which the programs run and also the changes to the types of applications
required by the users. By changes to the environment, we mean the changes that occur
to the different technologies that underlie computer hardware, system software,
networking, and peripheral devices. Let us examine the way the environment has
changed of late. This can indicate the challenges being posed to the software
development principles. This in turn would give us some insight into the way in which
the software engineering techniques are evolving of late.

The important changes to the environment that have occurred in the last two

decades include the following:

 The prices of computers have dropped drastically in this period. At the same
time, they have become more powerful. Now they can perform computations
much faster and store much larger volumes of data. The sizes of computers
have shrunk and laptops and palmtops are becoming popular.

 The Internet has become extremely popular. Internet connects millions of
computers world-wide and makes enormous available to the users.

 Networking techniques have made rapid progress. The speed of data transfer
has increased unbelievably and at the same time, the cost of networking
computers has dropped dramatically. Just to give an example of currently
supported speed of data transfer, desktops now come with a default 1Gbps
network port.

 Mobile phones have dramatically captured imagination of all. The level of
acceptance that mobile phones have achieved in less than a decadeappears
like a chapter straight out of a science fiction book. Mobile phones are rapidly
transforming themselves into handheld computing devices. In addition to high
speed fixed line connections, GPRS and wireless LANs have become common
place.

 Over the last decade, cloud computing has become popular. In cloud computing,
applications are hosted on cloud operating on a data center. Cloud computing
is becoming more and more popular as it helps a user run sophisticated
applications without much upfront investments and also frees him from buying
and maintaining sophisticated hardware and software.

Challenges faced by software developers

Following are some of the challenges that are being faced by software developers:

 To cope up with fierce competitions, business houses are rapidly changing their
business processes. This requires rapid changes to also occur to the software
that support the business process activities. Therefore, there is a pressing
demand to shorten the software delivery time. However, software is still taking
unacceptably long time to develop and is turning out to be a bottleneck in
implementing rapid business process changes. To reduce the software delivery
times, software is being developed by teams working from globally distributed
locations. How software can be effectively developed using globally distributed
development teams is not yet clear and poses many challenges. On the other
hand, radical changes to the software development principles are being put
forward to shorten the development time.

 Business houses are getting tired of astronomical software costs, late deliveries,
and poor quality products. On the other hand, hardware costs are dropping and

at the same time hardware is becoming more powerful, sophisticated, and
reliable. Hardware and software cost differentials are becoming more and more
glaring. The wisdom of developing every software from scratch is being
questioned.Also,

alternate software delivery models are being proposed to reduce the software
cost.

 Software sizes are further increasing.
 After Internet has become vastly popular, many software products are now

required to interface with the Internet. Many products are even expected to
work across the Internet. Also, with the availability of fast networks, distributed
applications are becoming common place. However,it is not clear that how
software is to be effectively developed in the context of distributed platforms
and Internet.In response to the challenges faced, the following software
engineering trends are becoming noticeable:

 Client-server software
 Service-oriented architecture (SOA)

Software as a service (SaaS)

CLIENT-SERVER SOFTWARE

In a client-server software, both clients and servers are essentially software
components. A client is a consumer of services and a server is a provider of
services. The client-server concept is not a new concept. It existed in the society
since long. For example, a teacher may be a client of a doctor, and the doctor may
in turn be a client of a barber, who in turn may be a client of the lawyer, and so
forth. From this, we can observe that a server in some context can be a client in
some other context. So, clients and servers can be considered to be mere roles.
Considering the level of popularity of the client-server paradigm in the context of
software development, there must be several advantages accruing from adopting
this concept. Let us deliberate on the important advantages of the client-server
paradigm.

Advantages of client-server software

There are many reasons for the popularity of client-server software. A few important
reasons are as follows:

Concurrency: A client-server software divides the computing work amongmany
different client and server components that could be residing on different machines.
Thus client-server solutions are inherently concurrent and as a result offer the
advantage of faster processing.

Loose coupling: Client and server components are inherently loosely- coupled,
making these easy to understand and develop.

Flexibility: A client-server software i s flexible in the sense that clients and servers can
be attached and removed as and when required. Also, clients can access the servers
from anywhere.

Cost-effectiveness: The client-server paradigm usually leads to cost- effective
solutions. Clients usually run on cheap desktop computers, whereas severs may run on
sophisticated and expensive computers. Even to use a sophisticated software, one
needs to own only a cheap client machine to invoke the server.

Heterogeneous hardware: In a client-server solution, it is easy to have specialised
servers that can efficiently solve specific problems. It is possible to efficiently
integrate heterogeneous computing platforms to support the requirements of different
types of server software.

Fault-tolerance: Client-server solutions are usually fault-tolerant. It is possible to have
many servers providing the same service. If one server becomes unavailable, then
client requests can be directed to any other working server.

Mobile computing: Mobile computing implicitly requires uses of client- server
technique. Cell phones are, of late, evolving as handheld computing and communicating
devices and are being provided with small processing power, keyboard, small memory,
and LCD display. The handhelds have limited processing power and storage capacity,
and therefore can act only as clients. To perform any non-trivial task, the handheld
computers can possibly only support the necessary user interface to place requests on
some remote servers.

Application service provisioning: There are many application software products that
are extremely expensive to own. A client-server based approach can be used to make
these software products affordable for use. In this approach, a n application service
provider (ASP) would own it, and the users would pay the ASP based on the charges
per unit time of usage.
Component-based development: Client-server paradigm fits well with the
component- based software development. Component-based software

development holds out the promise of achieving substantial reductions to cost and
delivery time and at the same time achieve increased product reliability. Component-
based development is similar to the way hardware equipments are being constructed
cost-effectively. A hardware developer achieves cost, effort, and time savings in an
equipment development by integrating pre-built components (ICs) purchased off-the-
shelf on a printed circuit board (PCB).

As discussed, advantages of the client-server software paradigm are numerous.
No wonder that the client-server paradigm has become extremely popular. However,
before we discuss more details of this technology, it is important to know the
important shortcomings of it as well.

Disadvantages of client-server software

There are several disadvantages of client-server software development. The main
disadvantages are:

Security: In a monolithic application, addressing the security concerns is much easier
as compared to client-server implementations. A client-server based software provides
many flexibilities. For example, a client can connect to a server from anywhere. This
makes it easy for hackers to break into the system. Therefore, ensuring security of a
client-server system is a very challenging task.

Servers can be bottlenecks: Servers can turn out to be bottlenecks because many
clients might try to connect to a server at the same time. This problem arises due to the
flexibility given that any client can connect anytime required.

Compatibility: Clients and servers may not be compatible to each other. Since the
client and server components may be manufactured by different vendors, they may not
be compatible with respect to data types, languages, number representation, etc.

Inconsistency: Replication of servers can potentially create problems as whenever
there is replication of data, there is a danger of the data becoming inconsistent.

CLIENT-SERVER ARCHITECTURES

The simplest way to connect clients and servers is by using a two-tierarchitecture
shown in Figure 15.1(a). In a two-tier architecture, any client can get service from any
server by sending a request over the network.

Limitations of two-tier client-server architecture

A two-tier architecture for client-server applications though is an intuitively
obvious solution, but it turns out to be not practically usable. The main problem
is that client and server components are usually manufactured by different
vendors, who may adopt their own interfacing and implementation solutions. As
a result, the different components may not interface with (talk to) each other
easily.

Three-tier client-server architecture

The three-tier architecture overcomes the main limitations of the two- tier
architecture. In the three-tier architecture, a middleware is added between client
and the server components as shown in Figure 15.1(b). The middleware keeps
track of all servers. It also translates client requests into server understandable
form. For example, the client can deliver its request to the middleware and
disengage because the middleware will access the data and return the answer to
the client.

Figure 15.1: Two-tier and three-tier client-server architectures.

SERVICE-ORIENTED ARCHITECTURE (SOA)

Service-orientation principles have their roots in the object-oriented designing.
Many claim that service-orientation will replace object- orientation; others think
that the two are complementary paradigms.

SOA views software as providing a set of services. Each service composed of smaller
services. Let us first understand what are software services. Services are implemented
and provided by a component for use by an application developer. A service is a
contractually de fined behaviour. That is, a component providing a service guarantees
that its behaviour is as per the specifications. A few examples of services are the
following—Filling out an on- line application, viewing an on-line bank-statement, and
placing an online booking. Different services in an application communicate with

each other. The services are self-contained. That is, a service does not depend on the
context or state of the other service. An application integrating different services works
within a distributed-system architecture.

SOA principally leverages the Internet and emerging the standardisations on it for
interoperability among various services. An application is built using the services
available on the Internet, and writing only the missing ones.

There are several similarities between services and components, which are as
follows:

 Reuse: Both a component and a service are reused across multiple applications.
 Generic: The components and services are usually generic enough to be useful

to a wide range of applications.
 Composable: Both services and components are integrated together to

develop an application.
 Encapsulated: Both components and services are non-investigable through

their interfaces.
 Independent development and versioning: Both components and services

are developed independently by different vendors and also continue to evolve
independently.

 Loose coupling: Both applications developed using the component paradigm
and the SOA paradigm have loose coupling inherent to them.

SOFTWARE AS A SERVICE (SAAS)

Owning software is very expensive. For example, a Rs. 50 Lakh software running on an
Rs. 1 Lakh computer is common place. As with hardware, owning software is the current
tradition across individuals and business houses. Most of IT budget now goes in
supporting the software assets. The support cost includes annual maintenance charge
(AMC), keeping the software secure and virus free, and taking regular back-ups, etc. But,
often the usage of a specific software package does not exceed a couple of hours of usage
per week. In this situation, it would be economically worthwhile to pay per hour of
usage. This would also free the user from the botherance of maintenance, up gradation,
backup, etc. This is exactly what is advocated by SaaS.As we can see, SaaS shifts
“ownership” of the software from the customer to a service provider. Software owner
provides maintenance, daily technical operation, and support for the software. Services
are provided to the clients on amount of usage basis. The service provider is a vendor
who hosts the software and lets the users execute on-demand charges per usage units. It
also shifts the responsibility for hardware and software management from the customer
to the provider. The cost of providing software services reduces as more and more
customers subscribe to the service. Elements of outsourcing and application service

The main idea behind SOA is to build applications by composing software services.

provisioning are implicit in the SaaS model.Also, it makes the software accessible to a
large number of customers who cannot afford to purchase the software outright. Target
the “long tail” of small customers.

If we compare SaaS to SOA, we can observe that SaaS is a software delivery model,
whereas SOA is a software construction model. Despite significant differences, both
SOA and SaaS espouse closely related architecture models. SaaS and SOA complement
each other. SaaS helps to offer components for SOA to use. SOA helps to help quickly
realise SaaS. Also, the main enabler of SaaS and SOA are the Internet and web services
technologies.

 SaaS is changing the way software is delivered.

 SOA would fundamentally change the way we construct software systems. In the
SOA paradigm, an application can be built by orchestrating existing services,
and writing only the missing ones.

	SOFTWARE ENGINEERING
	Prepared by:

	SOFTWARE ENGINEERING (1)
	SOFTWARE ENGINEERING (2)
	INTRODUCTION
	What is software engineering?
	Software Product-
	Characteristics of Software Product
	Software Crisis-
	Causes of Software Crisis
	A Solution to the Software Crisis
	SOFTWARE DEVELOPMENT PROJECTS
	Programs versus Products
	Even though software engineering principles are primarily intended for use in development of professional software, many results of software engineering can effectively be used for development of small programs as well. However, when developing small ...
	Abstraction
	Decomposition
	SOFTWARE LIFE CYCLE MODELS
	Software life cycle
	Software development life cycle (SDLC) model
	WATERFALL MODEL AND ITS EXTENSIONS
	Classical Waterfall Model
	Phases of the classical waterfall model
	Feasibility study
	Requirements analysis and specification
	Design
	Coding and unit testing
	The purpose of the coding and unit testing phase is to translate a software design into source code and to ensure that individually each function is working correctly. The coding phase is also sometimes called t h e implementation phase, since the des...
	Integration and system testing
	Maintenance
	Shortcomings of the classical waterfall model

	Iterative Waterfall Model
	Phase containment of errors
	Phase overlap
	Shortcomings of the iterative waterfall model

	Prototyping Model
	Necessity of the prototyping model
	Life cycle activities of prototyping model
	Strengths of the prototyping model
	Weaknesses of the prototyping model

	Incremental Development Model
	Life cycle activities of incremental development model

	Evolutionary Model
	Advantages
	Disadvantages
	Applicability of the evolutionary model

	RAPID APPLICATION DEVELOPMENT (RAD)
	Main motivation

	Working of RAD
	How does RAD facilitate accommodation of change requests?
	 How does RAD facilitate faster development?

	 Applicability of RAD Model
	 Application characteristics that render RAD unsuitable

	AGILE DEVELOPMENT MODELS
	SPIRAL MODEL-
	Risk handling in spiral model
	2.1.1 Phases of the Spiral Model

	Advantages/pros and disadvantages/cons of the spiral model
	Spiral model as a meta model
	2.2 A COMPARISON OF DIFFERENT LIFE CYCLE MODELS

	MODULE-2
	Requirements Analysis and Specification
	Overview of requirements analysis and specification:
	Who performs requirements analysis
	Requirements analysis and specification phase mainly involves carrying out the following two important activities:
	Requirements gathering and analysis:
	Requirements gathering.
	● Studying existing documentation:
	● Interview:
	● Task analysis:

	Requirements analysis:
	Anomaly:
	Inconsistency:
	Incompleteness:
	Software Requirements Specification (SRS):
	Users of SRS document:
	● Users, customers, and marketing personnel:
	● Software developers:
	● Test engineers:
	● User documentation writers:
	● Project managers:
	● Maintenance engineers:

	Characteristics of a Good SRS Document:
	○ Implementation-independent:
	○ Traceable:
	○ Modifiable:
	○ Identification of response to undesired events:
	○ Verifiable:

	Categories of Customer requirements:
	Functional Requirements:
	Non-functional Requirements:
	● Design and implementation constraints:
	● External interfaces required:
	● One example of a user interface requirement of a software can be that it should be usable by factory shop floor workers who may not even have a high school degree Other non-functional requirements:

	Goals of implementation:
	Organization of the SRS Document:
	Various Sections of SRS:
	Overall description of organization of SRS document
	Product features: This section should summarize the major ways in which the software
	External interface requirements
	Other non-functional requirements for organization of SRS document
	IEEE 830 GUDILINES
	COHESION AND COUPLING
	Functional independence
	Classification of Cohesiveness
	Classification of Coupling
	LAYERED ARRANGEMENT OF MODULES
	APPROACHES TO SOFTWARE DESIGN
	Function-oriented Design
	Object-oriented Design
	O b je c t - o r i e n t e d v e r s u s function-oriented design approaches
	Automated fire-alarm system—customer requirements
	Data Flow Diagrams (DFDs)
	Primitive symbols used for constructing DFDs
	Important concepts associated with constructing DFD models

	Synchronous and asynchronous operations
	Data dictionary
	 Data definition
	6.1 DEVELOPING THE DFD MODEL OF A SYSTEM

	Context Diagram
	Level 1 DFD
	Decomposition

	Numbering of bubbles
	Balancing DFDs
	How far to decompose?
	Commonly made errors while constructing a DFD model
	Data dictionary for the DFD model of Example 6.1
	Data dictionary for the DFD model of Example 6.2
	Data dictionary for the DFD model of Example 6.3

	USER INTERFACE DESIGN
	CHARACTERISTICS OF A GOOD USER INTERFACE
	Support for multiple skill levels: A good user interface should support multiple levels of sophistication of command issue procedure for different categories of users. This is necessary because users with different levels of experience in using an app...
	BASIC CONCEPTS
	User Guidance and On-line Help
	Mode-based versus Modeless Interface
	Graphical User Interface (GUI) versus Text-based User Interface
	TYPES OF USER INTERFACES
	Command Language-based Interface
	Menu-based Interface
	Direct Manipulation Interfaces
	Decision Tree and Decision Table
	Decision Tree
	Advantages of decision trees

	Decision Tables
	Example of Decision Table
	Conversion of decision table into decision tree
	Advantages of a Decision tree over Decision table

	CODING AND TESTING
	CODING
	Coding Standards and Guidelines
	Representative coding standards

	Code Walkthrough
	Code Inspection
	Clean Room Testing
	SOFTWARE DOCUMENTATION
	Internal Documentation
	External Documentation
	Gunning’s fog index

	TESTING
	Basic Concepts and Terminologies
	How to test a program?

	Verification versus validation
	Testing Activities
	10.1.1 Why Design Test Cases?

	Testing in the Large versus Testing in the Small
	UNIT TESTING
	Driver and stub modules

	BLACK-BOX TESTING
	Equivalence Class Partitioning
	Boundary Value Analysis
	Summary of the Black-box Test Suite Design Approach
	WHITE-BOX TESTING
	Basic Concepts
	Fault-based testing
	Coverage-based testing

	Testing criterion for coverage-based testing
	Stronger versus weaker testing

	Statement Coverage
	Branch Coverage
	Multiple Condition Coverage
	Path Coverage
	Control flow graph (CFG)
	Path

	Linearly independent set of paths (or basis path set)
	McCabe’s Cyclomatic Complexity Metric
	How is path testing carried out by using computed McCabe’s cyclomatic metric value?
	Steps to carry out path coverage-based testing
	Uses of McCabe’s cyclomatic complexity metric

	Data Flow-based Testing
	Mutation Testing
	DEBUGGING
	Debugging Approaches
	Brute force method

	Backtracking
	Cause elimination method
	Program slicing
	Debugging Guidelines
	PROGRAM ANALYSIS TOOLS
	Static Analysis Tools
	Dynamic Analysis Tools
	INTEGRATION TESTING
	Big-bang approach to integration testing
	Bottom-up approach to integration testing
	Top-down approach to integration testing
	Mixed approach to integration testing
	Phased versus Incremental Integration Testing
	TESTING OBJECT-ORIENTED PROGRAMS
	What is a Suitable Unit for Testing Object-oriented Programs?
	Do Various Object-orientation Feature Make Testing Easy?
	Grey-Box Testing of Object-oriented Programs
	State-model-based testing
	Use case-based testing
	Class diagram-based testing
	Sequence diagram-based testing

	Integration Testing of Object-oriented Programs
	SYSTEM TESTING
	Smoke Testing
	Performance Testing
	Stress testing
	Volume testing
	Configuration testing
	Compatibility testing
	Regression testing
	Recovery testing
	Maintenance testing
	Documentation testing
	Usability testing
	Security testing
	Error Seeding
	SOME GENERAL ISSUES ASSOCIATED WITH TESTING
	Test documentation
	Regression testing (1)
	Basic concepts in software reliability

	Software reliability refers to the probability of a program operating without failures for a specified time in a given environment, and is a crucial aspect of software quality, focusing on the dynamic, operational behavior of a program rather than its...
	Software Reliability Measures

	Software reliability measures, also known as software reliability metrics, are used to quantify the reliability of a software product. These metrics help developers, testers, and stakeholders understand how likely the software is to perform its intend...
	Basic Measures
	 Mean Time To Failure (MTTF):
	o This measures the average time between consecutive failures.
	o It's particularly relevant for systems that are expected to run for extended periods.
	o A higher MTTF indicates better reliability.
	o Formula: MTTF = Total operating time / Number of failures
	 Mean Time To Repair (MTTR):
	o This measures the average time it takes to repair a software system after a failure.
	o A lower MTTR indicates better maintainability and, indirectly, better reliability (as the system is down for a shorter time).
	 Mean Time Between Failures (MTBF):
	o This is the average time between two successive failures.
	o For repairable systems, it's the sum of MTTF and MTTR.
	o Formula: MTBF = MTTF + MTTR
	 Rate of Occurrence of Failure (ROCOF):
	o This measures the frequency of failures in a given time interval.
	o It's calculated as the number of failures divided by the time of exposure.
	 Probability of Failure on Demand (POFOD):
	o This measures the likelihood that the system will fail when a service request is made.
	o It's useful for systems where services are requested intermittently.
	o Formula: POFOD = Number of failures / Number of requests
	 Availability:
	o This measures the degree to which a system is operational and accessible when required.
	o It's often expressed as a percentage.
	o Availability is influenced by both MTTF and MTTR.
	o Formula: Availability = MTTF / (MTTF + MTTR)
	Reliability Growth Models – Software Engineering

	The reliability growth group of models measures and predicts the improvement of reliability programs through the testing process. The growth model represents the reliability or failure rate of a system as a function of time or the number of test cases...
	1. Coutinho Model – Coutinho adapted the Duane growth model to represent the software testing process. Coutinho plotted the cumulative number of deficiencies discovered and the number of correction actions made vs. the cumulative testing weeks on log-...
	2. Wall and Ferguson Model – Wall and Ferguson proposed a model similar to the Weibull growth model for predicting the failure rate of software during testing. The cumulative number of failures at time t, m(t), can be expressed as[Tex]$$m(t)=a_0[b(t)]...
	Reliability growth models are mathematical models used to predict the reliability of a system over time. They are commonly used in software engineering to predict the reliability of software systems and to guide the testing and improvement process.
	Types of reliability growth models:
	1. Non-homogeneous Poisson Process (NHPP) Model: This model is based on the assumption that the number of failures in a system follows a Poisson distribution. It is used to model the reliability growth of a system over time and to predict the number o...
	2. Duane Model: This model is based on the assumption that the rate of failure of a system decreases over time as the system is improved. It is used to model the reliability growth of a system over time and to predict the reliability of the system at ...
	3. Gooitzen Model: This model is based on the assumption that the rate of failure of a system decreases over time as the system is improved, but that there may be periods of time where the rate of failure increases. It is used to model the reliability...
	4. Littlewood Model: This model is based on the assumption that the rate of failure of a system decreases over time as the system is improved, but that there may be periods of time where the rate of failure remains constant. It is used to model the re...
	5. Reliability growth models are useful tools for software engineers, as they can help to predict the reliability of a system over time and to guide the testing and improvement process. They can also help organizations to make informed decisions about...
	6. It is important to note that reliability growth models are only predictions, and actual results may differ from the predictions. Factors such as changes in the system, changes in the environment, and unexpected failures can impact the accuracy of t...
	Advantages of Reliability Growth Models:
	1. Predicting Reliability: Reliability growth models are used to predict the reliability of a system over time, which can help organizations make informed decisions about the allocation of resources and the prioritization of improvements to the system.
	2. Guiding the Testing Process: Reliability growth models can be used to guide the testing process, by helping organizations determine which tests should be run, and when they should be run, in order to maximize the improvement of the system’s reliabi...
	3. Improving the Allocation of Resources: Reliability growth models can help organizations to make informed decisions about the allocation of resources, by providing an estimate of the expected reliability of the system over time, and by helping to pr...
	4. Identifying Problem Areas: Reliability growth models can help organizations to identify problem areas in the system, and to focus their efforts on improving these areas in order to improve the overall reliability of the system.
	Disadvantages of Reliability Growth Models:
	1. Predictive Accuracy: Reliability growth models are only predictions, and actual results may differ from the predictions. Factors such as changes in the system, changes in the environment, and unexpected failures can impact the accuracy of the predi...
	2. Model Complexity: Reliability growth models can be complex, and may require a high level of technical expertise to understand and use effectively.
	3. Data Availability: Reliability growth models require data on the system’s reliability, which may not be available or may be difficult to obtain.
	SOFTWARE MAINTENANCE
	13.1 CHARACTERISTICS OF SOFTWARE MAINTENANCE
	Types of Software Maintenance
	Characteristics of Software Evolution
	Special Problems Associated with Software Maintenance
	SOFTWARE REVERSE ENGINEERING
	SOFTWARE MAINTENANCE PROCESS MODELS
	First model
	Second model
	ESTIMATION OF MAINTENANCE COST
	SOFTWARE REENGINEERING
	SOFTWARE REUSE
	14.1 WHAT CAN BE REUSED?
	14.2 WHY ALMOST NO REUSE SO FAR?
	14.3 BASIC ISSUES IN ANY REUSE PROGRAM
	Component indexing and storing
	Component searching
	Component understanding
	Component adaptation
	Repository maintenance

	EMERGING TRENDS
	Challenges faced by software developers
	CLIENT-SERVER SOFTWARE
	Advantages of client-server software
	Disadvantages of client-server software
	CLIENT-SERVER ARCHITECTURES
	Limitations of two-tier client-server architecture
	Three-tier client-server architecture
	SERVICE-ORIENTED ARCHITECTURE (SOA)
	SOFTWARE AS A SERVICE (SAAS)

