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Introduction to Signals: 
 

 

What is a Signal ? 

 
 A signal is formally defined as a function of one or more variables that conveys 

information on the nature of a physical phenomenon. 

 When the function depends on a single variable, the signal is said to be one 

dimensional. E.g.; Speech signal (Amplitude varies with respect to time) 

 When the function depends on two or more variables, the signal is said to be 

multidimensional. E.g.; Image – 2D (Horizontal & vertical coordinates of the 

images are two dimensional) 

What is a System ? 

 
 A system is formally defined as an entity that manipulates one or more signals to 

accomplish a function, thereby yielding new signals. 

i/p signal                                                      o/p signal  

 

 e.g.; In a communication system the input signal could be a speech signal or 

computer data. The system itself is made up of the combination of a transmitter, 

channel and a receiver. The output signal is an estimate of the information 

contain in the original message. 

 

       
Message signal            Transmitted signal                                Received signal                          Estimate of message 

signal 

  

  

The examples of other systems are control systems, biomedical signal processing 

system, audio system, remote sensing system, microelectro mechanical system etc. 

 

General signal characteristics: 
 

(a) Multichannel & multidimensional signals: 

 A signal is described by a function of one or more independent variables. 

 The value of the function (dependent variable) can be real valued scalar quantity, 

a complex valued quantity or perhaps a vector. 

Real valued signal x1 (A) = A sin3πt 

Complex valued signal x2(A) = Ae 
j3 πt 

 = A cos3πt + jAsin3πt 

 In some applications, signals are generated by multiple sources or multiple 

sensors. Such signals can be represented in vector form and we refer such a 

vector of signal as a multichannel signal. 

E.g.; In electrocardiography, 3-lead & 12-lead electrocardiograms (ECG) are 

often used, which result in 3-channel & 12-channel signals. 

One dimensional: If the signal is a function of a single                                                                        

independent variable, the signal is called 1-D signal.             Amp          

 e.g.; Speech signal 

 

 

 

System 

Transmitter  Channel Receiver 
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Multidimensional signal: Signals can be functions  

of more than  one variable, e.g., image signals (2D), 

Colour image (3D), etc. 
 

 

Classification of signals 
 

Broadly we classify signals as: 

 

1. Continuous-time signal: A signal x(t), is 

     said to be continuous-time signal if it is  

defined for all time t,  where t is a  

real-valued variable denoting  time.  

 Ex: x(t) = e
-3t

u(t) 

 

  Discrete-time signal:  A signal x(n), is said  

to be discrete-time signal; if it is defined only           

at discrete instant of time,  where n  is an   

integer-valued variable  denoting  the discrete   

samples of time.  We use square brackets [·] to 

denote  a discrete-time  signal. 

        Ex: x[n] = e
-3n

u[n] 

2. Even and odd signal:  
 

A continuous-time signal x(t) is even, if  x(-t) = x(t)  

  and it is odd if   x(-t) = -x(t).   

A discrete-time signal x[n] is even if x[-n] = x[n] 

and is odd if  x[-n] = -x[n].     

Example 1: x(t) = t2 - 40 is even. 

Example 2: x(t) = 0.1t3 is odd.  

Example 3: x(t) = e0.4t  is neither  even nor odd.  

                                                   

 

 

 

 

  

 
           (a)    (b)    (c) 

 
Figure: Illustrations of odd and even functions.  (a) Even; (b) Odd; (c) Neither. 

 

 

  1 

 

 

 

 

  t  

  

X[n]        e-3 

      e-6 

                

                                e-9 

 

 

        

         0        1        2      3 
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Decomposition Theorem 
 

Every continuous-time signal x(t) can be expressed as: 
 

x(t) = 𝑦 𝑡  + 𝑧 𝑡  
 

where 𝑦 𝑡  is even, and 𝑧 𝑡 is odd.    

𝑦 𝑡 =  
𝑥 𝑡 + 𝑥(−𝑡)

2
 

and                                                  

𝑧 𝑡 m =  
𝑥 𝑡 − 𝑥(−𝑡)

2
 

 

3. Periodic & non-periodic signals: 

 

A continuous time signal x(t) is periodic if there is a constant  T > 0, such that   

x(t) = x(t + T ), for all t  

A discrete time signal x[n]  is periodic  if there  is an integer  constant N > 0, such that  
 

x[n]  = x[n + N ], for all n 
 

Signals do not satisfy the periodicity conditions are called non-periodic signals. 
 

Note: The smallest value of T (N) that satisfies the above equations is called fundamental   period 
 
Example:  Determine the fundamental period  of the  following signals: 

(a)  ej3πt/5 

(b) ej3πn/5  

Solution: 

(a)   Let x(t) = ej3πt/5. If x(t) is a periodic signal, then there exists T > 0 

   such that  x(t) = x(t + T ). Therefore, 
 

x(t) = x(t + T ) 

                

     ⇒ e 
j3πt/5

 = e
 j3π(t+T)/5 

     ⇒ 1 = e
 j3πT/5

 

     ⇒ e 
j2kπ  = e

 j3πT/5

 

     ⇒ T = 
10

3
    (k = 1) 

 

(b) L et x[n] = ej3πn/5.  If x[n] is a periodic signal, then there exists an integer N > 0 

      such that x[n] = x[n + N ]. So, 
 

         x[n] = x[n + N ] 

 

   ⇒ e 
j3πn/5

 = e
 j3π(n+N)/5

 

  ⇒ 1 = e
 j3πN/5

 

  ⇒ ej2kπ = e
 j3πN/5

 

  ⇒ T = 10    (k = 3) 
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4. Energy signals and power signals: 
 
In electrical systems, a signal may represent a voltage or a current. Consider a voltage 
v(t)developed across a resistor R, producing a current i(t). The instantaneous power 
dissipated in this resistor is defined by 

Define the total energy of the continuous-time signal x( t) as 

𝐸 = lim
𝑇→∞

 𝑥2
𝑇/2

−𝑇/2

 𝑡 𝑑𝑡 

  

= lim
𝑛→∞

 𝑥2
∞

−∞

 𝑡 𝑑𝑡 

 and its time-averaged, or average, power as

 
          

𝑃 = lim
𝑇→∞

1

𝑇
 𝑥2

𝑇/2

−𝑇/2

 𝑡 𝑑𝑡 

 

From  above equation,  we readily  see that  the time-averaged   power  of a periodic  signal 

x(t)  of fundamental   period  T is  given by

  

𝑃 =
1

𝑇
 𝑥2

𝑇/2

−𝑇/2

 𝑡 𝑑𝑡 

 
The  square  root  of the average  power  P is called the root mean-square (rms) value  of the 
periodic  signal x( t). 
In the case of a discrete-time   signal x[n], the integrals in above equations are replaced by 

corresponding   sums. Thus, the total energy of x[ n] is defined  by 

  𝐸 =  𝑥2[𝑛]

∞

𝑛=−∞

 

and its average  power  is defined  by 

  𝑃 = lim
𝑛→∞

1

2𝑁 + 1
 𝑥2[𝑛]

𝑁

𝑛=−𝑁

 

 

 

 

 

A signal is referred to an energy signal if and only if the total energy is finite .i.e.,                 

0 < E < ∞  

 

A signal is referred to an power signal if and only if the average power is finite .i.e.,              

0 < P < ∞  

Note: Energy signal has zero time average power and power signal has infinite energy. 

 

 

 Page 8



 

Example: x(n) = (- 0.5) 
n
u[n] 

Solution: 

  𝐸 =  𝑥2[𝑛]∞
𝑛=−∞ =   0.25𝑛 = ∞

𝑛=0
1

1−0.25  
=  

4

3 
 < ∞ 

  𝑃 = lim𝑛→∞
1

2𝑁+1
 𝑥2[𝑛]𝑁

𝑛=−𝑁  = lim𝑛→∞
1

2𝑁+1
 0.25𝑛𝑁

𝑛=0  = 
1

2∞+1
 0.25𝑛𝑁

𝑛=0   = 0 

We got power zero and finite energy. Hence it is an energy signal.   

5. Deterministic signals and random signals: 

 
The deterministic signal is a signal about which there is no uncertainty with respect to 

its value at any time. The deterministic signals may be modeled as completely specified 

function of time. 

Example:  x(t) = cos
2
(2πt) 

A random signal is a signal about which there is uncertainty before it occurs.                                                          

Example: The electrical noise generated in the amplifier of a radio or television 

receiver. 

 
Basic Operations of Signals 

 
Operation performed on independent variable: 
 

Time Shift 

For any t
0 and n

0  , time shift is an operation  defined as 

x(t)  →  x(t - t
0 ) 

x[n]   →  x[n - n
0
]. 

 
 
 
 
 

If t
0 > 0, the  time shift is known as “delay”.   If t

0  < 0, the  time shift is known 

as “advance”. 

Example. In Fig. given below, the left image shows a continuous-time signal 

x(t). A time- shifted version x(t - 2) is shown in the right image. 

 

 

 

 
 

Figure: An example of time shift. 
 

 

Time Reversal 
 

Time reversal is defined as 

 
 
 

x(t)  →  x(-t) 

x[n]   →  x[-n], 

 

 
 
 

 

which can be interpreted as the “flip over the y-axis”. 
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Example: 
 

 
 

Figure: An example of time reversal. 
 
 

 
Time Scaling 
 

Time scaling is the operation where the time variable t is multiplied by a constant a: 

x(t)  → x(at),     a > 0                                            

 If a > 1, the time scale of the resultant signal is “decimated” (speed up).   

 If 0 < a < 1, 

the time scale of the resultant signal is “expanded”  (slowed down). 

 

 
 

Figure : An example of time scaling. 

 

 

Decimation and Expansion 
 

Decimation and expansion are standard discrete-time signal processing operations. 
 

Decimation is defined as  
 

   yD [n] = x[M n], for some integers M                                                    
 

Where, M is the decimation factor. 

 

 

Expansion is defined as 

 

        x[ 
𝑛

𝐿
] , n = integer multiple of L 

yE [n] =    

      0,             otherwise. 
 

 

Where, L is the expansion factor.
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Figure 1.8: Examples of decimation and expansion for M = 2 

and L = 2. 
 
 

 
Combination of Operations 

Generally, linear operation (in time) on a signal x(t) can be expressed as                

y(t) = x(at-b). The recommended method is “Shift, then Scale”. 

 

 

Example: The signal x(t) shown in Figure of sketch x(3t - 5). 
 

 

 
 

Figure: An example of Shift, then Scale  
 

 
 

Operation performed on dependent variable: 

 

Amplitude scaling: 

Let x(t) denote a continuous time signal 

  By amplitude scaling, we get y(t) = cx(t) 

Where, c is the scaling factor. 

Example: An electronic amplifier, a device that performs amplitude scaling. 

For discrete time signal y[n] = cx[n]   

Amplitude addition: 

Let x1(t) and x2(t) is a pair of continuous time signal 

By adding these two signals, we get y(t) = x1(t) + x2(t)  

Example: An audio mixture 

For discrete time signal, y[n] = x1[n] + x2[n]     Page 11



 

Amplitude multiplication: 

Let x1(t) and x2(t) is a pair of continuous time signal 

By multiplying these two signals, we get y(t) = x1(t) x2(t)  

Example: An AM radio signal, in which 

  x1(t) is an audio signal  

  x2(t) is an sinusoidal carrier wave  

For discrete time signal, y[n] = x1[n] x2[n]     

Differentiation: 

y(t) 
𝑑

𝑑𝑡
 𝑥(𝑡) 

Example: Voltage across an inductor L  v(t) 
𝑑

𝑑𝑡
 𝑖(𝑡) 

Integration: 

y(t)= 𝑥 𝜏 𝑑𝜏
𝑡

−∞
 

Example: Voltage across a capacitor C  y(t)= 
1

𝐶
 𝑖 𝜏 𝑑𝜏
𝑡

−∞
 

Elementary Signals 
 

Several elementary signals feature prominently in the study of signals and systems. These are 

exponential and sinusoidal signals, the step function, the impulse function, and the ramp 

function, all of which serve as building blocks for the construction of more complex signals 

Exponential Signals 
 

A real exponential signal, in its most general form, is written as 

x(t)  =  Be
at

,                                                      

where both B and a are real parameters. The parameter B is the amplitude of the exponential 

signal measured at time t = 0. Depending on whether the other parameter a is positive or 

negative, we may identify two special cases: 

     

           Fig:  Growing exponential, for a > 0         Decaying exponential, f o r a < 0 

In discrete time, it is common practice to write a real exponential signal as x[n] = Br
n
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                  Fig:   Growing exponential for r > 1             Decaying exponential for 0 < r <1  

 
 
Impulse functions 

 
The discrete-time version of the unit impulse is defined by 
 

             δ [n] =  
1,
0,
     n=0

n≠0
                                                              

 
Fig: Discrete time form of unit impulse 

 
The continuous-time version of the unit impulse is defined by the following pair of relations:

       

 δ (t) = 0 for t ≠ 0
    

                           and   𝛿  𝑡 𝑑𝑡 = 1
∞

−∞
 

 

 

 

       Fig: Continuous time form of unit impulse 

 

Above equation says that the impulse δ (t) is zero everywhere except at the origin. Equation says that 
the total area under the unit impulse is unity. The impulse δ (t) is also referred to as the Dirac delta 
function. 

 

Step function: 

The discrete-time version of the unit- step function is defined by: 

 

                             

 

              δ (t) 

 

 

 1 

 

 

 

 

                       0                         t 
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The continuous-time version of the unit- step function is defined by: u(t) =   
1,
0,
       t>0

t<0
    

 

               

Ramp function: 

The integral of the step function u(t) is a ramp function of unit slope. 

       

Fig: Ramp function of unit slope 

   The discrete-time version of the unit- ramp function is defined by: r[n] =   
n,
0,
       n≥0

n<0
    

                      

Introduction to Systems 

 
 Systems are used to process signals to allow modification or extraction of 

additional information from the signal. 

 A system may consist of physical components (hardware realization) or an 

algorithm (operator) that computes the output signal from the input signal. 

 A physical system consists of inter-connected components which are characterized 

by their input-output relationships. 
  

Figure 2.1: Continuous-time and discrete-time systems: Here H & T are operators. 

 
 
 

 

H T  = Hx(t)   = Tx(n)  
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Properties of systems: (Classification of systems): 

 
1   Static (Memoryless) & Dynamic (with memory): 

 

Static:  A system is static if the output at time t (or n)  depends only on the input at time t (or 

n). 
 

Examples: 
 

1. y(t) = (2x(t) - x2(t))2 is memoryless, because y(t) depends on x(t) only. There is no x(t - 
1), or x(t + 1) terms,  for example. 

 

2. y[n] = x
2
[n] is memoryless.  In fact, this system is passing the input to output directly, 

without any processing. 

3. Current flowing through a resistor i.e., i(t) = 
1

𝑅 
 v(t) 

 Dynamic: A system is said to possess memory if its output signal depends on past or future values of 

input. 

Example: 

  1. Inductor and capacitor, since the current flowing through the inductor at time „t‟ depends on the all 

past values of the voltage v(t) i.e., i(t) = 
1

𝐿 
 𝑣(𝜏)𝑑𝜏
𝑡

−∞
 and v(t) = 

1

𝐶  
 𝑖(𝜏)𝑑𝜏
𝑡

−∞
  

  2.  The moving average system given by y(n)= 
1

3
 (x[n]+x[n-1]+x[n-2]) 

 

2   Stable & unstable system: 

 
 A system is said to be bounded-input, bounded-output (BIBO) stable if and only 

if every bounded input results in a bounded output, otherwise it is said to be 

unstable. 

 If for |x(t)| ≤ Mx < ∞ for all t, output is |y(t)| ≤ My < ∞ for all t; where Mx & My 

are some finite positive number.  

 

Example:  1. y(t) = x (t-3) is a stable system. 

      2. y(t) = t x(t) is an unstable system. 

 3. y[n] = e
x[n]

 is a stable system. 

 

               Assume that |x(n)| ≤ Mx < ∞, for all „t‟ 

                   y[n] = e
x[n]

 = e
Mx

 = finite   Stable 

 

4. y[n] = r
n 

x[n], where r > 1 

 

                Assume that |x(n)| ≤ Mx < ∞, for all „t‟, then 

                    |y[n]| = |r
n 

x[n]| = |r
n
| |

 
x[n]| 

                                       as „n‟  ∞   |r
n
|  ∞ 

                                       so  y[n]∞ hence unstable. 

 

3   Causal and non-Causal system: 

 
      Causal: A system is said to be causal if the present value of output signal depends 

only on the present or past values of the input signal. A causal system is also known as 

physical or non-anticipative system. 

Example:1. The moving average system given by y(n)= 
1

3
 (x[n]+x[n-1]+x[n-2]) 

         2.  y(t) = x(t)cos 6t  

 Page 15



 

Note: i)  Any practical system that operates in real time must necessarily be causal. 

ii)  All static systems are causal.   

  

Non-Causal: A system is said to be non-causal if the present value of output 

signal depends on one or more future values of the input signal. 

Example:1. The moving average system given by y(n)= 
1

3
 (x[n]+x[n-1]+x[n+2]) 

 

4   Time invariant and time variant system: 

 Time  invariant:  A system is time-invariant if a time-shift of the input signal results in 

the same time-shift of the output signal.   
 

 That  is, if 

x(t) → y(t), 

then the system is time-invariant if 
 

x(t - tO) → y(t - tO), for any tO .     

 

. 

 

 
 

Figure 2.2: Illustration of a time-invariant system. 
 

 

Example 1. 

The system y(t) = sin[x(t)] is time-invariant 

Proof.  Let us consider a time-shifted signal x1 (t) = x(t - tO).  Correspondingly, we let y1(t) be 

the output of x1(t).  Therefore, 
 

y1(t) = sin[x1(t)] = sin[x(t - tO)]. 
 

Now, we have to check whether y1 (t) = y(t - tO).  To show this, we note that 
 

y(t - tO) = sin[x(t - tO)], 

 
which is the same as y1 (t). Therefore, the system is time-invariant. 

 

Time variant:  A system is time-variant if its input –output characteristic changes with time. 

 

Example 2: 

The system y[n] = nx[n] is time-variant. 
 

 

Proof: Output for a time shifted input is    

     y[n] | x(n-k) = nx(n-k) 

then the same time shifted output is 

     y(n-k) = (n-k)x(n-k) 

the above two equations are not same. Hence it is time variant.  
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4   Linear and non-linear system: 

 
Linear system: A system is said to be linear if it satisfies two properties i.e.; superposition & 

homogeneity. 

Superposition: It states that the response of the system to a weighted sum of signals 

be equal to the corresponding weighted sum of responses (Outputs of the system to 

each of the individual input signal. 

For an input x(t) = x1(t), the output y(t) = y1(t)  

      and input x(t) = x2(t), the output y(t) = y2(t) 

then, the system is linear if & only if 

 T [a1x1(t) + a2x2(t)] = a1T [x1(t)] + a2T [x2(t)] 

Homogeneity: If the input x(t) is scaled by a constant factor „a‟, then the output y(t) is also scaled by 

exactly the same constant factor „a‟. 

For an input x(t)  output y(t)  

      and input x1(t) = ax (t)output y1(t) = ay(t) 

 Example 1: 
The system y(t) = 2πx(t) is linear.  To see this, let‟s consider a signal 

 
x(t) = ax1(t) + bx2(t), 

 

where y1(t) = 2πx1(t) and y2(t) = 2πx2(t).  Then 
 

ay1(t) + by2(t) = a (2πx1(t)) + b (2πx2(t)) 

= 2π [ax1 (t) + bx2(t)] = 2πx(t) = y(t). 
 

Example 2. 

The system y[n] = (x[2n])
2  

is not linear.  To see this, let‟s consider the signal 
 

x[n] = ax1[n] + bx2[n], 
 

where  y1[n]  = (x1 [2n])
2   

and  y2[n]  = (x2 [2n])
2
.   We  want  to  see whether  y[n]  = 

ay1 [n] + by2 [n]. It holds that 
 

 

 

ay1 [n] + by2 [n] = a (x1[2n])
2  
+ b (x2[2n])

2 
. 

 

However, 
 

y[n] = (x[2n])2  = (ax1 [2n] + bx2[2n])
2 
= a2(x1[2n])2  + b2 (x2[2n])2  + 2abx1[n]x2 [n]. 

 
 

5   Invertible and non-invertible system: 

 
 A system is said to be invertible if the input of the system can be recovered from the 

output. 

Let the set of operations needed to recover the input represents the second system 

which is connected in cascade with the given system such that the output signal of the 

second system is equal to the input applied to the given system. 
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Let    H      the continuous time system 

 x(t)    input signal to the system 

 y(t)    output signal of the system 

 H
inv

   the second continuous time system 

 

         x(t)   y(t)              x(t) 

 

The output signal of the second system is given by 

  H
inv

{y(t)} = H
inv

{Hx(t)} 

        = H
inv

H{x(t)} 

For the output signal to equal to the original input, we require that  

              

 

 Where „I‟ denotes the identity operator. 

The system whose output is equal to the input is an identity system. The operator H
inv

 must satisfy the 

above condition for H to be an invertible system. Cascading a system, with its inverse system, result in an 

identity system. 

Example:  

An inductor is described by the relation 

   y(t) = 
1

𝐿 
 𝑥(𝜏)𝑑𝜏
𝑡

−∞
 is an invertible system 

because, by rearranging terms, we get 

   x(t) = L 
𝑑

𝑑𝑡  
 y(t), 

which is the inversion formula. 

Note:i) A system is not invertible unless distinct inputs applied to the system produce distinct outputs. 

ii) There must be a one to one mapping between input and output signal for system to be invertible. 

Non-invertible System: When several dibfferent inputs results in the same output, it is impossible to 

obtain the input from output. Such system is called a non-invertible system. 

Example: A square-law system described by the input output relation 

   y(t) = x
2
(t),  is non-invertible, 

 because distinct inputs x(t) & -x(t) produce the same output y(t) [not distinct output]. 

 

Linear –time convolution system (LTI) 
 

 

Linear time invariant (LTI) systems are good models for many real-life systems, and they have 

properties that lead to a very powerful and effective theory for analyzing their behavior.  The LTI 

systems can be studied through its characteristic function, called the impulse response. Further, any 

arbitrary input signal can be decomposed and represented as a weighted sum of unit sample sequences. 

As a consequence of the linearity and time invariance properties of the system, the response of the 

H H
inv

 

 H H
inv 

= I 
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system to any arbitrary input signal can be expressed in terms of the unit sample response of the 

system. The general form of the expression that relates the unit sample response of the system and the 

arbitrary input signal to the output signal, called the convolution sum, is also derived. 

 

Resolution of a Discrete-time signal into impulses: 

Any arbitrary sequence x(n) can be represented in terms of delayed and scaled impulse sequence δ(n). 

Let x(n) is an infinite sequence as shown in figure below. 

 

 

   

 
 
  

 

 
 

Figure 1.13: Representing of a signal x[n] using a train of impulses δ[n - k]. 

 

The sample x(0) can be obtained by multiplying x(0), the magnitude, with unit impulse 

δ(n)  

  i.e.,  x[n] δ[n] =   
𝑥(0),

0,
       𝑛=0

𝑛≠0
    

Similarly, the sample x(-3) can be obtained as shown in the figure. 

  i.e.,  x[-3] δ[n+3] =   
𝑥(−3),

0,
       𝑛=−3

𝑛≠−3
  

In the same way we can get the sequence x[n] by summing all the shifted and scaled 

impulse function 

  i.e.,  x[n] = …. x[-3] δ[n+3] + x[-2] δ[n+2] + …. + x[0] δ[n] + ….+ x[4 ] δ[n-4]… 

       =   𝑥 𝑘 𝛿(𝑛 − 𝑘)∞
𝑘=−∞  

Impulse response and convolution sum: 

Impulse response: A discrete-time system performs an operation on an input signal 

based on predefined criteria to produce a modified output signal. The input signal x[n] is 

●●● 

 

●●● 
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the system excitation, and y[n] is the system response. The transform operation is shown 

in the figure below. 

               x[n]                 y[n]=T[x[n]]     

          

 

 

If the input to the system is the unit impulse i.e., x[n] = δ[n], then the output of the 

system is known as impulse response represented by h[n] where 

   h[n] = T [δ[n]] 

Response of LTI system to arbitrary inputs: The convolution sum  

 

From the above discussion, we get the response of an LTI system to an unit impulse as 

the impulse response h[n] i.e., 

   δ[n]         h[n]  

         δ[n-k]         h[n-k], by time invariant property 

      x(k)δ[n-k]         x(k)h[n-k], by homogeneity principle 

      𝑥(𝑘)𝛿[𝑛− 𝑘∞
𝑘=−∞ ]          𝑥(𝑘)ℎ[𝑛− 𝑘∞

𝑘=−∞ ], by super position 

As we know the arbitrary input signal is a weighted sum of impulse, the LHS = x[n] 

having a response in RHS =  y[n] known as convolution summation. 

i.e., x[n]      y[n] 

 

In other words, given a signal x[n] and the impulse response of an LTI system 

h[n], the convolution between x[n] and h[n] is defined as
 

𝑦[𝑛] =  𝑥(𝑘)ℎ[𝑛− 𝑘]

∞

𝑘=−∞
 

 

We denote convolution as y[n] = x[n] ∗ h[n]. 
 

• Equivalent form: Letting m = n - k, we can show that 

 𝑥(𝑘)ℎ[𝑛− 𝑘]

∞

𝑘=−∞

=   𝑥(𝑛−𝑚)ℎ[𝑚]

∞

𝑚=−∞

=  𝑥[𝑛− 𝑘]ℎ[𝑘]

∞

𝑘=−∞
 

 

 
Properties of convolution: 
 
The following “standard” properties can be proved easily: 

1. Commutative: x[n] ∗ h[n] = h[n] ∗ x[n] 

2. Associative:  x[n] ∗ (h1[n] ∗ h2[n]) = (x[n] ∗ h1 [n]) ∗ h2 [n] 

3. Distributive:  x[n] ∗ (h1 [n] + h2 [n]) = (x(t) ∗ h1[n]) + (x[n] ∗ h2[n]) 

T 
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How to Evaluate Convolution? 
 

To evaluate convolution, there are four basic steps: 
 

1. Fold                          3. Multiply 
    

2. Shift   4. Summation 
 
 

Example1:  Consider the signal x[n]  and  the  impulse response h[n] shown below. 
 

 

 
 

 

Let‟s compute the output y[n] one by one. First, consider y[0]: 
 

𝑦[𝑜] =  𝑥 𝑘 ℎ[0 − 𝑘] = 

∞

𝑘=−∞

 𝑥 𝑘 ℎ[−𝑘] =  1

∞

𝑘=−∞

Note that  h[-k] is the flipped version of h[k], and  𝑥 𝑘 ℎ[−𝑘] =  1∞
𝑘=−∞  is the multiply-

add between x[k] and h[-k]. 

 

To calculate y[l], we flip h[k] to get h[-k], shift h[-k] go get h[l-k], and multiply-add

to get  𝑥 𝑘 ℎ[1 − 𝑘] ∞
𝑘=−∞ . Therefore  

 

𝑦[1] =  𝑥 𝑘 ℎ[1 − 𝑘] = 

∞

𝑘=−∞

 𝑥 𝑘 ℎ[1 − 𝑘] =  1 × 1 + 2 × 1 = 3

∞

𝑘=−∞

 
The calculation is shown in the figure below. 

 

 
 

  System Properties  
 

With the notion of convolution, we can now proceed to discuss the system 

properties in terms of impulse responses. 
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Memoryless 
 

A system is memoryless if the output depends on the current input only. An 

equivalent statement using the impulse response h[n] is that: 
 

An LTI system is memoryless if and only if 
 

h[n] = aδ[n], for some a.                                        

Invertible 
 

An LTI system is invertible if and only if there exist g[n] such that 
 

h[n] ∗ g[n] = δ[n].  

                                                  
 

 
 

Causal 
 

 

An LTI system is causal if and only if 
 

h[n] = 0,      for all n < 0.                                          
 

Stable 
 

An LTI system is stable if and only if 

  ℎ[𝑘] <  ∞

∞

𝑘=−∞

 
 

 

Proof: Suppose that    ℎ[𝑘] < ∞∞
𝑘=−∞ . For any bounded signal |x[n]| ≤ B, the output is   

 

  |𝑦[𝑛]| ≤  𝑥[𝑘]ℎ[𝑛 − 𝑘]

∞

𝑘=−∞

 

    

            =   𝑥[𝑘] . |ℎ[𝑛 − 𝑘]|

∞

𝑘=−∞

 

            ≤ 𝐵.  |ℎ[𝑛 − 𝑘]|

∞

𝑘=−∞

 

Therefore, y[n] is bounded. 
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Continuous-time Convolution 
 

The continuous-time case is analogous to the discrete-time case.  In continuous-

time signals, the signal decomposition is 

    

𝑥 𝑡 =  𝑥 𝜏 
∞

−∞

𝛿 𝑡 − 𝜏 𝑑𝜏 

 

and consequently,  the continuous  time convolution is defined as 

 𝑡 =  𝑥 𝜏 
∞

−∞

ℎ 𝑡 − 𝜏 𝑑𝜏 

                                          

Example: The continuous-time convolution also follows the three step rule: flip, shift, 

multiply- add.  Let us consider the signal x(t) = e-at u(t) for a > 0, and impulse response 

 h(t) = u(t). The output y(t) is 

Case A: t > 0:   

𝑦 𝑡 =  𝑥 𝜏 
∞

−∞

ℎ 𝑡 − 𝜏 𝑑𝜏 

     

             =  𝑒−𝑎𝑟𝑢(𝜏)
∞

−∞

𝑢 𝑡 − 𝜏  

                                                                   =  𝑒−𝑎𝑟𝑑𝜏
𝑡

0

 

                                                           = 
1

−𝑎
 [1-e

-at
] 

Case B: t ≤ 0:  

 
y(t) = 0.

Therefore, 
 

𝑦 𝑡 =
1

𝑎
 [1 − 𝑒−𝑎𝑡 ]u(t) 

 

Properties of CT Convolution 
 

The following properties can be proved easily: 

1. Commutative: x(t) ∗ h(t) = h(t) ∗ x(t) 

2. Associative:  x(t) ∗ (h1(t) ∗ h2(t)) = (x(t) ∗ h1(t)) ∗ h2(t) 

3. Distributive:  x(t) ∗ [h1(t) + h2 (t)] = [x(t) ∗ h1 (t)] + [x(t) ∗ h2 (t)] 
 

 

Continuous-time System Properties 
 

The following results are analogous to the discrete-time case. 
 

 

Memoryless. 

An LTI system is memoryless if and only if Page 23



 

h(t) = aδ(t), for some a 

Invertible. 

An LTI system is invertible if and only if there exist g(t) such that 

h(t) ∗ g(t) = δ(t). 

Causal. 

A system is causal if and only if 
 

h(t) = 0,     for all t < 0

Stable. 

A system is stable if and only if 

 |ℎ 𝜏 |
∞

−∞

𝑑𝜏 <  ∞ 

Interconnection of LTI systems: 

 
1. Parallel connection of LTI System: Consider two LTI systems with impulse 

responses h1(t)and h2(t) connected in parallel as shown in the figure below. The output 

of this connections of systems, y(t), is the sum of the outputs of the two systems i.e., 

    y(t)= y1(t)+ y2(t)= x(t) ∗ h1(t)+ x(t) ∗ h2(t)  

         = x(t) ∗ [h1(t)+ h2(t)] 

Identical results hold for the discrete time case. 

 

    x(n) ∗ h1(n)+ x(n) ∗ h2(n) = x(n) ∗ [h1(n)+ h2(n)] 

 

     

 Fig: Parallel interconnection of two LTI system & its equivalent systems 

 

2. Cascade connection of LTI System: Consider the cascade connection of two LTI 

systems as shown in the figure. The output of this connection of systems 

 

   y(t)= {x(t) ∗ h1(t) ∗ h2(t)} 

Using associative property of convolution, we get 

   y(t)= x(t) ∗{h1(t) ∗ h2(t)} 
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Fig: Cascade Interconnection of two LTI system & its equivalent systems 

 

Step response: Step input response are often used to characterize the response of an 

LTI system to sudden changes in the input. It is defined as the output due to a unit step 

input signal. 

Let h[n] be the impulse response of a discrete-time LTI system and s[n] be the step 

response. 

Then,   s[n] = h[n] ∗ u[n] 

                             =  ℎ[𝑘]𝑢[𝑛 − 𝑘]∞
𝑘=−∞  

Now, as u[n-k] = 0 for k > n and u[n-k] = 1 for k ≤ n, 

𝑠[𝑛] =  ℎ[𝑘]

∞

𝑘=−∞

 

 

i.e., the step response is the running sum of the impulse response. Similarly, the 

step response s(t) of a continuous-time system is expressed as the running 

integral of the impulse response: 

 

𝑠 𝑡 =  ℎ 𝜏 𝑑𝜏
𝑡

−∞

 

 

Note: These relationships may be inverted to express the impulse response in terms of 

the step response as 

 

    h[n] = s[n] – s[n-1]  

 

   and,     h(t) = 
𝑑

𝑑𝑡
 𝑠(𝑡) 
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Fourier Representations for Signals 
 
 

In this chapter, the signal is represented as a weighted superposition of complex sinusoids. 

If such a signal is applied to an LTI system, then the system output is a weighted 

superposition of the system response to each complex sinusoid. Representing signal as 

superposition of complex sinusoids not only leads to a useful expression for the system 

output, but also provides an insightful characterization of the signals and systems.  The 

study of signals and systems using sinusoidal representation is known as Fourier analysis 

named after Joseph Fourier.  

Basing on the periodicity properties of the signal and whether the signal is discrete or 

continuous in time, there are four different types of Fourier representations, each 

applicable to a different class of signals. 

 

Complex sinusoids and frequency response of LTI systems: 

 
 The response of an LTI system to a sinusoidal input leads to a characterization of system 

behavior termed as frequency response of the system. This characterization is obtained in 

terms of the impulse response by using convolution and a complex sinusoidal input signal. 

Let us consider the output of a discrete-time LTI system with impulse response h[n] and 

unit amplitude complex sinusoidal input x[n] = e 
jΩn

 . This output is given by: 

𝑦[𝑛] =  ℎ[𝑘]𝑥[𝑛 − 𝑘]

∞

𝑘=−∞

 

         =  ℎ[𝑘]

∞

𝑘=−∞

𝑒𝑗𝛺(𝑛−𝑘) 

 

We factor e 
jΩn 

from the sum to get 

𝑦[𝑛] = 𝑒𝑗𝛺𝑛  ℎ[𝑘]

∞

𝑘=−∞

𝑒−𝑗𝛺𝑘  

 

= H(𝑒𝑗𝛺 )𝑒𝑗𝛺𝑛  

Where we have defined  

 

𝐻(𝑒𝑗𝛺 ) =  ℎ[𝑘]

∞

𝑘=−∞

𝑒−𝑗𝛺𝑘  

Hence, the output of the system is a complex sinusoid of the same frequency as the input, 

multiplied by the complex number 𝐻(𝑒𝑗𝛺 ) . The relationship is shown in figure below: 

 

 
 

The complex scaling factor 𝐻(𝑒𝑗𝛺 ) is not a function of time n, but only is a function of 

frequency Ω and is termed the frequency response of the discrete-time system.  

The results obtained for continuous-time LTI system is similar to the above. 
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Let the impulse response of such a system be h(t) and the input be x(t) = e 
jωt

. Then the 

convolution integral gives the output as 

 
 

Where we define, 

 
 

The above equation is referred to as frequency response of the continuous time system. 

Writing the complex valued frequency response H(jω) in polar form 

 

H(jω) = |H(jω)|e 
jυ 

Where,  

|H(jω)| => magnitude response  

And, φ => phase response = arg{H(jω)} 

 

Example: The impulse response of the system given the figure below is 

 

 
 

 

 
 

Find an expression for the frequency response and plot the magnitude and phase response. 

 

Solution: Substituting h(t) in equation of  H(jω), we get 
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The magnitude response is:  

 
 

 While the phase response is  

arg{H(jω)} = - arctan(ωRC) 

 

 

 
 

      Fig:  (a) Magnitude-response               (b) Phase-response 

 

 

Eigenvalue and Eigenfunctions of an LTI System 

 
Definition:  For an LTI system, if the output is a scaled version of its input, then the 

input function is called an eigenfunction of the system.  The scaling factor is called the 

eigenvalue of the system. 

We take the complex sinusoid ψ(t) =  e 
jωt

 is an eigenfunction of the LTI system H 

associated with the eigenvalue λ = H(jω), because ψ satisfies an eigenvalue problem 

described by 

H{ψ(t)} = λψ (t) Page 28



 

The effect of the system on an eigenfunction input signal is scalar multiplication. The 

output is given by the product of the input and a complex number. This eigen 

representation is shown in the figure below. 

 

 
 

Fourier representation of four classes of signals: 

 There are four distinct Fourier representations, each applicable to a different class of 

signals. 

 The Fourier series (FS) applies to continuous time periodic signal, and the discrete -

time Fourier series (DTFS) applies to discrete time periodic signal. 

 The Fourier transform (FT) applies to a signal that is continuous in time and 

nonperiodic. 

 The discrete-time Fourier transform (DTFT) applies to a signal that is discrete in 

time and nonperiodic. 

Relationship between time properties of a signal and the appropriate Fourier representation 

is given below: 

 
 

Continuous-time periodic signals: The Fourier series 
 

Continuous-time periodic signals are represented by the Fourier series (FS). We may write 

the FS of a signal x(t) with fundamental period T and fundamental frequency ω0 = 2π/T, as 

  

 

                           Where,                    

are the FS coefficient of the signal x(t). We say that x(t) and X[k] are an FS pair and denote 

this relationship as  

 
The Fourier series coefficients are known as the frequency-domain representation of 

x(t),because each FS coefficient is associated with a complex sinusoid of different 

frequency. 

In the representation of the periodic signal x(t) by the Fourier series, the issue arises, is  

whether or not the series converges to x(t) for each value of t, i.e., whether the signal x(t) 

and its FS representation are equal at each value of t. 
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The Dirichlet conditions guarantee that the FS will be equal to x(t), except at the value of t 

for which  x(t) is discontinuous. At these values of t, FS converges to the mid-point of the 

discontinuity. The Dirichlet conditions are: 

 

1. The signal x(t) has a finite number of discontinuities in any period. 

2. The signal contains a finite number of maxima and minima during any period. 

3. The signal x(t) is absolutely integrable (bounded) i.e.,  

  𝑥 𝑡  𝑑𝑡 < ∞
∞

𝑇

 

 If x(t) is periodic and satisfies the Dirichlet condition, it can be represented in FS. 

 

Direct calculation of FS coefficients: 

 
Example: Determine the FS coefficient for signal x(t) 

 

 

 
Solution: Time period T = 2, Hence, ω0 = 2π/2 = π. On the interval 0 ≤ t ≤ 2, one period of 

x(t) is expressed as x(t) = e
-2t

. So,
 
 

 
 

We evaluate the integral to get 
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Fig: Magnitude and phase response of X[k] 

 

 

Calculation of FS coefficients by inspection: 

 
Example: Determine the FS representation of the signal 

x(t) = 3 cos (πt/2 + π/4) 

 

Solution: Time period T = 4, So, ω0 = 2π/4 = π/2. We may write FS of a signal x(t) is, 

 

 
 

Using Euler‟s formula to expand the cosine, gives 

 

 
  

Equating each term in this expansion to the terms in equation of x(t) gives the FS 

coefficient: 

 
 

 

The magnitude and phase spectra are shown below. 
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Figure: Magnitude and phase spectrum 

 

Example: Find the time domain signal x(t) corresponding to the FS coefficient 

 

 
Assume that fundamental period T = 2. 

 

Solution: Substituting the values given for X[k] and ω0 = 2π/2 = π into equation x(t) gives 

 

 
 

The second geometric series is evaluated by summing from l = 0 to l = ∞, and subtracting 

the l = 0 term.  The result of summing both infinite geometric series is 

 

 
 

Putting the fractions over a common denominator results in 

 

 
 

Discrete-time periodic signals: The discrete-time Fourier series 
 

Discrete-time periodic signals are represented by the discrete-time Fourier series (DTFS). 

We may write the DTFS of a signal x[n] with fundamental period N and fundamental 

frequency Ω0 = 2π/N, as 

 
 

Where 

 
 

Are the DTFS coefficient of the signal x[n].We say that x[n] and X[k] are a DTFS pair and 

denote this relationship as  
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The DTFS coefficients are known as the frequency-domain representation of x[n], because 

each DTFS coefficient is associated with a complex sinusoid of different frequency.  
 
Direct calculation of DTFS coefficients: 

 
Example: Determine the DTFS coefficient for signal x[n] shown 

 
 

Solution: The signal has a period N = 5, so Ω0 = 2π/5. As the signal also has odd symmetry, 

it can be sum over n =-2 to n =2 in the equation and we get, 

                     
 

Using the values of x[n], we get 

 
From the above equation, we identify one period of DTFS coefficients X[k], k=2 to k=-2, in 

rectangular and polar coordinates as 

 

                                               
 

 

 
 

Fig: Magnitude and Phase Response of X[k] 
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The above figure shows the magnitude and phase of X[k] as functions of the frequency 

index k. 

 Now suppose we calculate X[k] using n = 0 to n =4 for the limits on the sum in eqn.of X[k] 

to obtain 

 

 
 

Calculation of DTFS coefficients by inspection: 

 

Example: Determine the DTFS coefficients of the signal 

 

x[n] =  cos (πn/3 + υ) 

 

Solution: Time period N=6.We expand the cosine by using Euler‟s formula as 

 

 
 

Now comparing with the DTFS equation with Ω0= 2π/6=π/3, written by summing from      

k= -2 to 3 

 
 

 

Equating the terms, we get 

 
 

 

The magnitude and phase spectrum is given below 
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The Inverse DTFS: 

 
Example: Determine the time signal x[n] from the DTFS coefficients given in figure below 

 

 
 

Solution: The DTFS coefficients have period = 9, hence Ω0=2π/9. It is convenient to 

evaluate x[n] over the interval k = -4 to k = 4 to obtain 

 

 
 

 

 
Continuous-time nonperiodic signals: The Fourier transform 

 

The Fourier transform is used to represent a continuous-time nonperiodic signal as a 

superposition of complex sinusoids. We know that the continuous nonperiodic nature of a 

time signal implies that the superposition of complex sinusoids used in the Fourier 

representation of the signal involves a continuum of frequencies ranging from -∞ to ∞. So 

the FT representation of a continuous-time signal involves an intyegral over the entire 

frequency interval; i.e., 

 
Where, 

 
 
Example1. FT of a real decaying exponential: 

 

 Find the FT of x(t) = e
-at

u(t) shown in the figure below. 
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Solution: The FT does not converge for a ≤ 0, since x(t) is not absolutely integrable, i.e.;  

 

 𝑒−𝑎𝑡𝑑𝑡 = ∞
∞

0
  ,   a ≤ 0 

 

For a > 0, we have 

 

 
 

Converting to polar form, the magnitude and phase of X(jω) are respectively given by 

 
and  

 
 

 

as shown in figure below. 
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The magnitude of  X(jω) plotted against ω is known as the magnitude spectrum of the 

signal x(t) , and the phase of X(jω) plotted as a function of ω is known as the phase 

spectrum of x(t).   

 

Example 2: FT of a rectangular pulse: 

 

Consider the rectangular pulse shown figure below and defined as 

 

 
 

 

 
Find the FT of x(t). 

 

Solution: The rectangular pulse x(t) is absolutely integrable, provided that T0 < ∞. So we 

have 

 

 
For ω = 0, the integral simplifies to 2T0. L‟Hospital‟s rule straightforwardly shows that 

lim
𝜔→0

2

𝜔
sin 𝜔𝑇0 = 2𝑇0 

 

 

 

Thus, we usually write 

X(jω) = 
2

𝜔
 sin (ω T0) 

 

With the understanding that the value at ω = 0 is obtained by evaluating a limit. In this case 

X(jω) is real and is shown in the figure below. 
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The magnitude spectrum is  

 
and the phase spectrum is 

 

 
 

Using sinc function notation, we may write X(jω) as 

 

 
 

 

 

 

 

Inverse FT of a rectangular spectrum: 

 
Example: Find the inverse FT of the rectangular spectrum (figure below) given by 

 
 

 
Solution: Using equation for x(t) for inverse FT yields 

 

 
 

When t = 0, the integral simplifies to W/π. As 
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We usually write 

 
 

or 

 
 

The value at t = 0 is obtained as a limit. The x(t) is shown in the following diagram. 

 

 
 

 
Discrete-time nonperiodic signals: The Discrete-time Fourier transform 

 
The DTFT is used to represent a discrete-time nonperiodic signal as a super position of 

complex sinusoids. As reasoned previously, the DTFT would involve a continuum of 

frequencies on the interval – π < Ω < π, where Ω has unit of radians. Thus, the DTFT 

representation of a time-domain signal involves an integral over frequency, namely, 

 
 

Where 

 
is the DTFT of the signal x[n]. As X(e

j Ω
) and x[n] are a DTFT pair, we can write 

 

. 

The transform X(e
j Ω

) describes the signal x[n] as a function of a sinusoidal frequency Ω 

and is called the frequency-domain representation of  x[n]. The equation for x[n] is usually 

called the inverse DTFT, as it maps the frequency-domain representation back into the 

time-domain. 

If   

  𝑥[𝑛] < ∞

∞

𝑛=−∞

 

i.e.; if x[n] is absolutely summable, then the sum in eqn. X(e
j Ω

) converges uniformly to a 

continuous function of ω. 

 

Example: Find the DTFT of the sequence x[n] = α
n
u[n]. 
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Solution: Using the above equation, we have 

 

 
This sum diverges for |α| ≥ 1. For |α| ≤ 1, we have the convergent geometric series  

 

 
If α is real valued, the denominator of the above equation may be expanded. Using Euler‟s 

formula, we get 

 

 
From this form, we see that the magnitude and phase spectra are given by  

 

 
and 

 

, respectively. 

 

The magnitude and phase spectra for α = 0.5 and α = 0.9 are shown in the figure below. 

The magnitude is given and the phase is odd and both are 2π periodic. 

   

 
 

Inverse DTFT 

 

Example: Find the Inverse DTFT of the following rectangular spectrum 
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Solution: Substituting X(e
j Ω

) in DTFT representation, we get 

 
For n = 0, the integrand is unity and we have x[0]=W/π. Using L‟Hopital‟s rule, we can 

easily show that 

 
And thus we usually write 

 

 
 

 
 

Fig: Inverse DTFT in Time domain 

 

 

 

Properties of Fourier representation: 

 
1. Linearity:  

All four Fourier representations satisfy the linearity property. 
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In these relationships, we assume that the upper case symbol denotes the Fourier 

representation of the corresponding lower case symbol. 

 

  

2. Symmetry:  

 

 
 

3. Convolution: 

 

 a) Convolution of nonperiodic signal: Convolution of two signals h(t) & x(t) in the 

time domain corresponds to multiplication of their FT, H(jω) & X(jω)  in frequency 

domain.  

 

 
 

A similar property holds for convolution of discrete time non-periodic signal .If  

 

x[n]              X(e
jΩ

) and h[n]              H(e
jΩ

),then 

 

y[n] = x[n]∗ ℎ[𝑛]                  Y (e
jΩ

) = X (e
jΩ

) H(e
jΩ

) 

 

b) Convolution of periodic signal: The periodic convolution of two periodic CT 

signals x(t) and z(t), each having period T , as 

  

 
 

Substituting the FS representation of z(t) into the convolution integral leads to the 

property 

 
 

Similarly in DTFS 

 
 

4) Differentiation and Integration: 

 

DTFT DTFT 

DTFT 
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a) Differentiation in time: Differentiating a signal in time domain corresponds to 

multiplying its FT by jω in the frequency domain i.e; 

 

 
b) Differentiation in frequency: Differentiation of FT in frequency domain 

corresponds to  multiplication of the signal by –jt  in the time domain i.e; 

 

                                                              
 

Commonly used Differentiation and Integration properties: 

 
5) Time Shift:  

Let z(t) = x(t-t0) be a time –shifted version of x(t). The goal is to relate the FT of z(t) 

to the FT of x(t) 

 
Putting τ = t – t0, we obtain 

 

 
 

Time-shift properties of Fourier representation: 
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Frequency-shift properties of Fourier representation: 
 

 
 

Multiplication property: 

 

For nonperiodic signal:  

 
 

 
For periodic signal:  

 
 

 
 

 

Scaling properties:  
Let us consider the effect of scaling the time variable on the frequency-domain 

representation of a signal. Beginning with the FT, let z(t) = x(at), where a is a constant. By 

definition, we have 

 
We effect the change of variable τ = at to get 

 

 
These can be combined into a single integral 

 

 
We can conclude that 

 

 
 

 

Scaling the signal in time introduces the inverse scaling in the frequency-domain 

representation and an amplitude change, as shown in the given figure: 
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Parseval Relationships: 

 

It states that the energy or power in the time-domain representation of a signal is equal 

to the energy or power in the frequency-domain representation. So the energy and 

power are conserved in the Fourier representation. 

The energy in a continuous-time non-periodic signal is 

𝑊𝑥 =  |𝑥
∞

−∞

 𝑡 |2𝑑𝑡 

Where it is assumed that x(t) may be complex valued general. As |x(t)|
2
 = x(t) x٭(t), 

taking the conjugate of both sides of Eq, we may express x٭(t) in terms of its FT X(jω) 

as 

 
Substituting this formula into the expression for Wx, we obtain 

 

 
Now we interchange the order of integration: 

 
Observing that the integral inside the braces is the FT of x(t), we obtain 

 
And so conclude that 

 
 

 

Hence, the energy in the time-domain representation of the signal is equal to the energy 

in the frequency-domain representation, normalized by 2π. The quantity |X(jω)|
2
 plotted 

against ω is known as energy spectrum of the signal. 

Analogous results hold for the periodic signal is known as power density spectrum of 

the signal.  
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The other three representations are summarized in the table below: 

 

 
 

 

 

 

Duality:  
In this chapter, we observed a consistent symmetry between the time and frequency 

domain representations of signals. For example, a rectangular pulse in either time or 

frequency corresponds to a sinc function in either frequency or time, as shown in the 

figure below. 

 
 

We have also observed symmetries in Fourier representation properties i.e.; convolution 

in one domain corresponds to modulation in other domain; differentiation in one domain 

corresponds to multiplication by the independent variable in the other domain, and so 

on. So by the consequence of this symmetry, we may interchange time and frequency. 

This interchangeability property is termed duality. 

Duality properties of Fourier representation is summarized in the table below: 
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Applications of Fourier representations to mixed signal classes 

 
 We now discuss the application of Fourier representations  to mixed signals like 

- Periodic & nonperiodic signal 

- Continuous & discrete time signal 

 Such mixing of signals occurs most commonly when one uses Fourier methods to  

- Analyze the interaction between signals & systems 

- Numerically evaluate properties of signal or  the behavior of a system 

 For example: If we apply a periodic signal to a stable LTI system, the convolution 

representation of the system output involves a mixing of nonperiodic (impulse 

response) and periodic (input) signals.  

 Another example: A system that samples continuous time-signal involves both 

continuous & discrete-time signals. 

 In order to use Fourier methods to analyze such interactions, we must build bridges 

between the Fourier representations of different classes of signals. 

 DTFS is the only Fourier representation that can be evaluated numerically on a 

computer.  

 

Fourier transform representation of periodic signals: 

 

Neither FT nor DTFT converges for periodic signals. However, by incorporating impulses 

into the FT & DTFT in the appropriate manner, we may develop FT & DTFT 

representations of such signals.  

 

Relating FT to FS: 

 

The FS representation of a periodic signal x(t) is 

𝑥 𝑡 =  𝑋[𝑘]𝑒𝑗𝑘𝑡 𝜔0

∞

𝑘=−∞

 

 
Where, ω0 is the fundamental frequency of the signal. 

As, , using frequency shift property, the inverse FT of a frequency shifted 

impulse δ (ω-kω0) is a complex sinusoid with frequency kω0. i.e,; 

 
If we find FT of 𝑥 𝑡 ,  then by using linearity property of FT we obtain 

 

 
 

Thus the FT of a periodic signal is a series of impulses spaced by the fundamental frequency 

ω0. The k
th

 impulse has strength 2πX(k) , where X(k) is the k
th

 FS coefficient. 

The shape of X(jω) is identical to that of  X(k). The FT obtained from the FS by placing 

impulses at integer multiples of ω0 and weighing them by 2π times the corresponding FS 

coefficient. 

Given an FT consisting of impulses that are uniformly spaced in ω, we obtain the 

corresponding FS coefficients by dividing the impulse strengths by 2π.   
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Fig: FS and FT representation of periodic continuous-time signals 

 

Relating DTFT to DTFS: 

 

The DTFS expression for a N periodic signal x[n] is  

 
 

The inverse DTFT of a frequency shifted impulse is a discrete-time complex sinusoid. The 

DTFT is a 2π periodic function of frequency. So we may express a frequency shifted 

impulse either by expressing one period such as 

 
Or, by using an infinite series of shifted impulses, separated by an interval of 2π, to obtain 

the 2π periodic function 

 
The inverse DTFT equation is evaluated by means of the shifting property of the impulse 

function. We have 

 
 

Hence we identify the complex sinusoid and the frequency shifted impulse as a DTFT pair 

using linearity property and substituting the above equation in equation of x[n], we get 

DTFT of periodic signal x[n] 

 
 

Since DTFT is 2π periodic, it follows that, DTFT of x[n] consists of a set of N impulses of 

strength 2πX(k),k=0,1,2…….,N-1. 

 
 

Given the DTFS coefficient and the fundamental frequency Ω0, we obtain the DTFT 

representation by placing impulses at integer multiples of Ω0 and weighting them by 2π 

times the corresponding DTFS coefficient. 
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Fig: DTFS & DTFT representation of a periodic discrete-time signal 

 

  

Fourier transform representation of Discrete-time signals: 

 

In this section we derive, an FT representation of discrete-time signal by incorporating 

impulses into the description of the signal the appropriate manner, establishing a 

correspondence between the continuous frequency ω and the discrete-time frequency Ω.  

Let us define the complex sinusoids 

x(t) = e
jωt

 and g[n] = e
jΩn 

Suppose a force g[n] equal to the samples of x(t) taken at intervals of Ts i.e.;  

g[n] = x(nTs) 

=> e
jΩn 

= e
jωTsn 

 

From which we conclude that Ω = ωTs. 

 

Relating FT to DTFT: 

 

DTFT of an arbitrary discrete-time signal x[n] is 

 
 

We want to find out an FT pair that corresponds to the DTFT pair 

. Substituting Ω = ωTs, we obtain the following function of continuous 

time frequency ω. 

 
Taking the inverse FT of Xδ(jω), using linearity and the FT pair 

 

 
 

yields the continuous time signal description 

 

 
 

 

Hence,  Page 49



 

 
 

 

The discrete-signal has values x[n], while the corresponding continuous time signal consists 

of a series of impulses separated by Ts, with n
th

 impulse having strength x[n]. The DTFT 

X(e
jΩ

) is 2π periodic in Ω, while the FT Xδ(jω) is 2π / Ts periodic in ω. 

 

 
 

Fig: Relationship between FT and DTFT representation of a discrete-time signal 

 

 

Relating FT to DTFS: 

 

The DTFT representation of an N periodic signal x[n] is given as 

 
Where X[k] is DTFS coefficient. 

Substituting Ω = ωTs into this eqn. yields the FT representation 

 
Using scaling property of impulse 

 
We can write 

 
DTFS coefficients X[k] are N-periodic function, which implies that Xδ(jω) is periodic with 

period NΩ0 /Ts = 2π / Ts. 

Continuous time representation of discrete-time signal as derived in previous chapter 

 
As x[n] is N periodic, so xδ(t) is also periodic with fundamental period NTs  
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Fig: Relationship between FT and DTFS representation of a discrete-time signal 

 

 

Sampling: 

 

- The sampling operation generates a discrete-time signal from the continuous-time 

signal in order to manipulate the signal on a computer or microprocessor. 

- Such manipulations are common in communication, control and signal processing 

systems. 

- Sampling is also frequently performed on discrete-time signal to change the effective 

data rate, an operation termed subsampling. 

 

Sampling continuous-time signals: 

 

- Let x(t) be a continuous-time signal. To define a discrete-time signal x[n] which is 

equal to the samples of x(t) at integer multiples of a sampling interval Ts, i.e.; 

x[n] = x[nTs]  

- The impact of sampling is elevated by relating the DTFT of x[n] to the FT of x(t). 

- The continuous-time representation of discrete-time signal x[n] is given by 

 
- Substituting x[nTs] for  x[n] in above eqn. we get 

 
Since  

 
So we may write 

 
 

Where 

 
 

- The above eqn. implies that we may mathematically represent the sample signal as 

the product of original continuous-time signal and impulse train. Page 51



 

- This representation is commonly termed as impulse sampling and is a mathematical 

tool used only to analyze sampling. 

- The effect of sampling is determined by relating FT of xδ(t).to FT of x(t). 

- As multiplication in the time domain corresponds to the convolution in the 

frequency domain, so by multiplication property: 

 
 

- As impulse train is continuous periodic function, so its FS is given as  

 

𝑃[𝑘] =
1

𝑇𝑠
 𝛿(𝑡)𝑒−𝑗𝑘𝜔0𝑡 

𝑇𝑠/2

−𝑇𝑠/2

𝑑𝑡 =  
1

𝑇𝑠
 

By using FT representation of FS 

𝑃 𝑗𝜔 = 2𝜋  𝑃[𝑘]𝛿(𝜔 − 𝑘𝜔𝑠 )

∞

𝑘=−∞

 

We get FT of impulse train as 

 

𝑃 𝑗𝜔 =
2𝜋

𝑇𝑠
 𝛿(𝜔 − 𝑘𝜔𝑠 )

∞

𝑘=−∞

 

 

Where ωs = 2π/Ts is the sampling frequency. 

 

 

Now we convolve X(jω)  with each of the frequency shifted impulse to get 

 
- The FT of the sampled signal is given by an infinite sum of shifted versions of the 

original signal‟s FT. 

- The shifted versions are offset by integer multiples of ωs. 

- The shifted versions of X(jω) may overlap with each other if  ωs is not large enough 

compared with the frequency extent or bandwidth of  X(jω). 

- Let the frequency component of the signal x(t) is assumed to lie within the frequency 

band –W < ω < W for the purpose of illustration. 
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Fig: The FT of a sampled signal for different sampling frequencies (a) Spectrum of a continuous-

time signal, (b) Spectrum of sampled signal when ωs = 3W, (c) Spectrum of sampled signal when ωs 

= 2W, (d) Spectrum of sampled signal when ωs = 1.5W 

 

- Note that, as Ts increases and ωs decreases, the shifted replicas of X(jω) move close 

together, finally overlapping one another when ωs < 2W. 

- Overlap in the shifted replicas of the original spectrum is termed aliasing. 

- Aliasing distorts the spectrum of the sampled signal. 

- The spectrum of the sampled signal no longer has a one to one correspondence with  

that of the original continuous-time signal. 

- This means that we cannot use the spectrum of the sampled signal to analyze the 

continuous-time signal and we cannot uniquely reconstruct the original continuous-

time signal from its samples. 

- The DTFT of  the sampled signal is obtained from Xδ(jω) by using the relationship  

Ω = ωTs 

 

- The scaling of the independent variable implies that ω= ωs corresponds to Ω = 2π. 

- The FTs have period ωs, while DTFTs have period 2π. 
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Fig: The DTFTs corresponding to the FTs depicted in Fig:1((b)-(d)). (a) ωs = 3W,  (b) ωs = 2W, (c) ωs = 1.5W 

 

Reconstruction of continuous-time signals from samples: 

 

- The problem of reconstructing a continuous-time signal from samples involving a 

mixture of continuous & discrete-time signals 

- A device that performs reconstruction has a discrete-time input signal and a 

continuous-time output signal. 

 

 
- The FT is well suited for analyzing this problem, since it may be used to represent 

both continuous & discrete-time signals. 

- We first consider the conditions that must be met in order to uniquely reconstruct a 

continuous-time signal from its samples. 

Sampling Theorem: 

- The samples of a signal do not always uniquely determine the corresponding 

continuous-time signal. 

- For example, the figure below shows, two different continuous-time signals having 

the same set of samples x[k] = x1(nTs) = x2(nTs) 

 

 
 

Fig: Two continuous-time signals x1(t) (dashed line) and x2(t) (solid line) that have the same set of samples Page 54



 

- Note that the samples do not tell us anything about the behavior of the signal in 

between the times it is sampled. 

- In order to determine how the signal behaves in between those times, we must 

specify additional constraints on the continuous-time signal. 

- One such set of constraints, that is very useful in practice, involves requiring the 

signal to make smooth transitions from one sample to another. 

- The smoothness, or rate at which the time domain signal changes, is directly related 

to the maximum frequency that is present in the signal. 

- So, constraining smoothness in the time domain corresponds to limiting the 

bandwidth of the signal. 

- Because there is one to one correspondence between the time domain and frequency 

domain representations of a signal, we may also consider the problem of 

reconstructing the continuous-time signal in the frequency domain. 

- To reconstruct a continuous-time signal uniquely from its samples, there must be a 

unique correspondence between the FTs of the continuous-time signal and the 

sampled signal. 

- The FTs are uniquely related if the sampling process does not introduce aliasing. 

- Aliasing distorts the spectrum of the original signal and destroys one-to-one 

relationship between the FTs of the continuous-time signal and the sampled signal. 

- Prevention of aliasing requires satisfying the sampling theorem. 

- Let  represent a band-limited signal so that X(jω) = 0 for |ω| > ωm 

If ωs > 2 ωm, where ωs = 2π / Ts is the sampling frequency, then x(t) is uniquely 

determined by its samples x(nTs), n=0,±1,±2,………    

- The minimum sampling frequency, 2 ωm, is termed the Nyquist sampling rate or 

Nyquist rate. The actual sampling frequency, ωs, is commonly referred to as the 

Nyquist frequency. 

- If  

fm = ωm / 2π and fs > 2 fm 

  =>1/Ts > 2 fm 

  => Ts <1/2 fm  
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Ideal Reconstruction: 

 

- The sampling theorem indicates how fast we must sample a signal so that the 

samples uniquely represent the continuous-time signal. 

- If , then the FT representation of the sampled signal is given by: 

 

 
- The goal of reconstruction is to apply some operation to Xδ(jω) that converts it back 

to X(jω). 

- Any such operation must eliminate the replicas, images of X(jω) that are centered at 

kωs. 

- This is accomplished by multiplying Xδ(jω) by  

 

 , as shown in the figure below 

 

 

 
Fig: (a) Spectrum of original signal, (b) Spectrum of sampled signal (c) frequency response of 

reconstruction filter. 

- We then have X(jω)  =  Xδ(jω) Hr(jω) 

- Note that, multiplication by Hr(jω) will not recover X(jω) from Xδ(jω) if the 

conditions of the sampling theorem are not met and aliasing occur. 

- Multiplication in the frequency domain transforms to convolution in the time 

domain. 

- Hence, x(t) = xδ(t) * hr(t) 

Where, .  

Substituting xδ(t)  in the above equation, we get 

 
Next we use 

 

                                                                         = Ts (
𝜔𝑠

2𝜋
 𝑠𝑖𝑛𝑐  

𝜔
𝑠𝑡

2𝜋
 )  

 = 𝑠𝑖𝑛𝑐  
𝜔

𝑠𝑡

2𝜋
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So, 

 
 

- In the time domain, we construct x(t) as a weighted sum of sinc functions shifted by 

the sampling interval. The weights correspond to the values of the discrete-tine 

sequence. 

- The value of the x(t) at t = nTs is given by x[n], because all of the shifted sinc 

functions are zero at nTs, except the n
th

 one and its value is unity. 

- The operation described by the above equation is referred to as ideal band limited 

interpolation, since it indicates how to interpolate in between the samples of a band-

limited signal. 

 
 

Fig: Ideal reconstruction in the time domain 

 

Fourier series representation of finite duration on periodic signal: 

 

- As DTFS is the only Fourier representation that can be evaluated numerically, so we 

apply DTFS and FS to signals that are not periodic to facilitate numerical computation 

of Fourier representations. 

- Another advantage of this representation is understanding of relationship between the 

FT and corresponding FS representation. 
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Relating the DTFS to DTFT: 

 

- Let x[n] be a finite duration aperiodic signal of length M i.e.;  

x[n] = 0       for n < 0 and n ≥ M 

- DTFT of this signal is 

 

- Let 𝑥 [n] be a periodic discrete-time signal with period N ≥ M such that one period of   

𝑥 [n] is given by x[n] . 

- The DTFS coefficients of  𝑥  [n] are given by  

 (as 𝑥  [n] = x[n] within one period) 

Where Ω0 = 2π / N 

 (as x[n] = 0 for n ≥ M) 

A comparison of 𝑋 [𝐾] and X(e
jω

) reveals that 

 

- The DTFS coefficient of 𝑥 [n] are  samples of the DTFT  of x[n], divided by N and 

evaluated by at intervals of 2π / N. 

- Although x[n] is not periodic, we define DTFS coefficients using x[n], n = 0,1,….N-1 

according to 

 

So X[K] = 𝑋 [𝐾] = (1/N) X (e
jkω0)  (from above two equations) 

- DTFS coefficients of x[n] correspond to the DTFS coefficients of periodically extended 

signal 𝑥 [n]. 

- The effect of sampling the DTFT of a finite-duration nonperiodic is to periodically 

extend the signal in the time domain. i.e.; 
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Fig: The DTFS of a finite duration nonperiodic signal 

 

- The above relationship is dual to sampling frequency.  

- Sampling a signal in time generates shifted replicas of the original signal in the 

frequency domain. 

Dual:  

- Sampling a signal in frequency generates shifted replicas of the original signal in the 

time domain. 

- In order to prevent overlap or aliasing, of those shifted replicas in time, we require the 

frequency sampling interval Ω0 to be less than or equal to 2π/ M (Ω0 ≤ 2π/ M => N ≥ 

M) 

Relating the FS to the FT: 

Let x(t), an aperiodic signal  have finite duration T0, 

 i.e.; x(t) = 0,   t < 0 & t ≥ T0 

Construct a periodic signal with period t 

 

With T ≥ T0 by periodically extending x(t) , the FS coefficients of  𝑥  (𝑡) are  
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Where we have used the relationship: 

 𝑥   𝑡 =  𝑥(𝑡) for 0  ≤ t ≤ T0 and 𝑥   𝑡 = 0  for T0 < t < T 

The FT of x(t) is defined by  

  (as x(t) is finite duration) 

Hence, comparing 𝑋   𝑘  with X(jω) 

                                   

The FS coefficients are the samples the FT, normalized by T. 
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Modulation: 

Modulation is basic to the operation of a communication system. Modulation provides the 

means for 

1. Shifting the range of frequencies contained in the message signal into another frequency 

range suitable for transmission over the channel. 

2. Performing a corresponding shift back to the original frequency range after reception of 

the signal. 

Formally modulation is defined as the process by which some characteristic of a carrier 

wave is verified in accordance with the message signal. The message signal is referred to as 

the modulating wave, and the result of the modulation process is referred to as the 

modulated wave. In the receiver, demodulation is used to recover the message signal from 

the modulated wave. Demodulation is the inverse of modulation process.  

Types of modulation: 

The specific type of modulation used in a communication system is determined by the form 

of carrier wave used to perform the modulation. The two most commonly used forms of 

carrier are a sinusoidal wave and a periodic pulse train. Correspondingly, there are two 

classes of modulation: Continuous-wave (CW) modulation and pulse modulation. 

Continuous-wave modulation: 

Consider the sinusoidal carrier wave  

    c(t) = Ac cos(φ(t)) 

which is uniquely defined by the carrier amplitude Ac and angle φ(t). Depending on the type 

of parameter chosen for modulation, two subclasses of CW modulation is identified. i.e.,  
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 Amplitude modulation, in which the carrier amplitude is varied with the message 

signal. 

 Angle modulation, in which the angle of carrier is varied with the message signal. 

 

 
 

Fig: Amplitude and angle modulated signal 

 

Pulse modulation: 

Consider a carrier wave  

𝑐 𝑡 =  𝑝(𝑡 − 𝑛𝑇)

∞

𝑛=−∞

 

that consists of a periodic train of narrow pulses, where „T‟ is the period and p(t) denotes a 

pulse of relatively short duration. When some characteristic parameter of p(t) is varied in 

accordance with the message signal, we get pulse modulation. Depending on how pulse 

modulation is actually accomplished, the two subclasses are  

 Analog pulse modulation, in which a characteristic parameter such as amplitude, 

duration or position of a pulse is varied continuously with the message signal. 

 Digital pulse modulation, in which the modulated signal is represented in coded 

form known as pulse code modulation.  
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Fig: Pulse amplitude modulation waveform 

 

Benefits of modulation  

In communication system, four benefits which results from the use of modulation are: 

1. Modulation is used to shift the spectral content of a message signal so that it lies inside 

the operating frequency band of a communication channel. It is useful for long distance and 

high speed transmission. E.g., The telephonic communication over a cellular radio channel, 

where 300-3100 Hz frequency are shifted to 800-900 MHz frequency, which is assigned to 

cellular radio system in North America.  

2. Modulation provides a mechanism for putting the information content of a message signal 

into a form that may be less vulnerable to noise or interference.  

3. It permits the use of multiplexing. Multiplexing permits the simultaneous transmission of 

information bearing signals from a number of independent sources over the channel and on 

to their respective destinations which makes communication channels cost-effective. 

4. Modulation makes it possible for the physical size of the transmitting or receiving 

antenna to assume a practical value. Electromagnetic theory says that the physical aperture 

of an antenna is directly comparable to the wavelength of the radiated or incident 

electromagnetic signal. Alternatively, since wavelength and frequency are inversely related 

we may say that the aperture of the antenna is inversely proportional to the operating 

frequency. Modulation elevates the spectral content of the modulating signal by an amount 

equal to the carrier frequency. Hence, the larger the carrier frequency, the smaller will be 

the physical aperture of the transmitting as well as the receiving antenna. 
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Full amplitude modulation: 

Let us consider a sinusoidal carrier wave 

    c(t) = Accos(ωct). 

For convenience of presentation, we have assumed that the phase of the carrier wave is zero 

in above equation (as the primary emphasis here is on variations imposed on the carrier 

amplitude). Let m(t) represent a message signal of interest. Amplitude modulation (AM) is 

defined as a process in which the amplitude of the carrier is varied in proportion to a 

message signal m(t). 

   s(t) = Ac[1+kam(t)] cos(ωct).  ………………..(1) 

where ka is a constant called the amplitude sensitivity factor of the modulator. The 

modulated wave s(t) o defined is said to be a „full‟ AM wave. Here, the radian frequency ωc 

of the carrier is maintained constant. 

Percentage of modulation: Is called the envelope of the AM wave s(t). Using a(t) to denote 

this envelope, the equation may be written as 

a(t) =  Ac|1+kam(t)|…………………….(2) 

Two conditions arise, depending on the magnitude of kam(t), compared with unity: 

1. Undermodulation, governed by the the condition 

|kam(t)| ≤ 1,   for all t. 

Under this condition, the term 1+kam(t) is always nonnegative. Therefore, the expression for 

the envelope of the AM wave may be simplified as 

a(t) =  Ac[1+kam(t)],     for all t. 

2. Overmodulation, governed by the weaker condition 

|kam(t)| > 1,    for some t. 

Under this condition, the equation (2) is used in evaluating the envelope of the AM wave. 

% modulation = The maximum absolute value of kam(t) × 100. 

Accordingly, the first condition corresponds to a percentage modulation ≤ 100%, whereas 

the second condition corresponds to a percentage modulation > 100%. 
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Generation of AM wave: 

Various schemes have been devised for the generation of an AM wave. Let us consider a 

simple circuit that follows from the defining equation (1). This equation can be rewritten as 

: 

s(t) = ka [m(t)+B] Ac cos(ωct). 

The constant B, equal to 1/ ka, represents a bias that is added to the message signal m(t) 

before modulation. The above equation suggests the scheme described in the block diagram 

given below for generating an AM wave. Basically it consists of two functional blocks: 

 An adder that adds the bias B to the incoming message signal m(t) 

 A multiplier that multiplies the adder output [m(t) + B] by the carrier wave Ac 

cos(ωct), producing the AM wave s(t). 

The percentage modulation is controlled by adjusting the bias B. 

 

 

 

 

 

 

Fig: System for generating an AM wave 

 

 

 

 

  

 

Fig: Waveform of Amplitude modulation for a varying percentage of modulation 

s(t) 

Adder 
Message 

signal m(t) 
Multiplier AM Wave 

s(t) 

Bias B Carrier 

Ac cos(ωct) 
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Frequency domain description of amplitude modulation: 

To develop the frequency description of AM wave s(t), we take the Fourier transform of 

both sides of equation (1). Let S(jω) denote Fourier transform of s(t) and M(jω) denote 

Fourier transform of m(t).  

 The Fourier transform of Ac cos(ωct) is π Ac [δ (ω-ωc) + δ (ω+ωc)] 

 The Fourier transform of m(t) cos(ωct) is 
1

2
 [M (jω-jωc) + M (jω+jωc)]   

Using these results and invoking the linearity and scaling properties of the Fourier 

transform, the Fourier transform of the AM wave is expressed as  

   S(jω) = π Ac [δ (ω-ωc) + δ (ω+ωc)] + 
1

2
 ka Ac[M (jω-jωc) + M (jω+jωc)] ……(3) 

Let the message signal m(t) be band limited to the interval - ωm ≤ ω ≤ ωm as shown in the 

figure below. 

                    (a)         (b) 

 Fig: 

We refer to the highest frequency component ωm of m(t) as the message bandwidth, 

measured in rad/s. We find from the eqn (3) that the spectrum S(jω) of the AM wave shown 

in the figure (b) above for the case where ωc > ωm . This spectrum consists of two impulse 

functions weighted by the factor π Ac and occurring at ± ωc, and two versions of the message 

spectrum shifted in frequency by ± ωc and scaled in amplitude  
1

2
 ka Ac. The spectrum in fig 

(b) described as follows: 

a) For positive frequencies, the portion of the spectrum of the modulated wave lying above 

the carrier frequency ωc is called upper sideband, where as the symmetric portion below ωc 

is called lower sideband. For negative frequencies, this condition is reversed. The condition 

ωc > ωm is a necessary condition for the side bands not to overlap.  
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b) For positive frequencies, the highest frequency component of the AM wave is ωc+ ωm 

and the lowest frequency component of the AM wave is ωc- ωm . The difference between 

these two frequencies defines the transmission bandwidth ωT for an AM wave which is 

exactly twice the message bandwidth ωm, i.e., ωT = 2 ωm. The spectrum of AM wave as 

depicted in fig (b) is full, in that the carrier, the upper sideband and the lower sideband are 

all completely represented. Hence, this form of modulation is called as full amplitude 

modulation.              

Demodulation of AM Wave:  

Envelope detector is used for demodulation of AM wave, shown in the figure below, which 

consists of a diode and a resistor-capacitor filter. The operation of this envelope detector is 

as follows: 

On the positive half-cycle of the input signal, the diode is forward biased and the capacitor 

C charges up rapidly to the peak value of the input signal. When the input signal falls below 

this value the diode becomes reverse biased and the capacitor C discharges slowly through 

the load resistor Rl . The discharging process continues until the next positive half cycle. 

When the input signal becomes greater than the voltage across the capacitor, the diode 

conducts again and the process is repeated. Here it is assumed that the diode is an ideal 

diode, the load resistance Rl is large compared with the source resistance Rs. During the 

charging process, the time constant is effectively equal to RsC. This time constant must be 

short compared with the carrier period 2π/ωc, i.e., 

RsC << 2π/ωc 

 

 

    

Fig: Circuit diagram of Envelope detector showing its input & output. 

Accordingly the capacitor C charges rapidly and thereby follows the applied voltage upto 

the positive peak when the diode is conducting. In contrast, when the diode is reverse 

biased, the discharging time constant is equal to RlC. This second time constant must be 
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long enough to ensure that the capacitor discharges slowly through the load resistor Rl  

between positive peaks of the carrier wave, but not so long that the capacitor voltage will not 

discharge at the maximum rate of change of modulating wave, i.e., 

2π/ωc <<  RlC << 2π/ωm. 

 

Pulse Amplitude Modulation: 

Pulse amplitude modulation (PAM) is a widely used form of pulse modulation. The basic 

operation in PAM systems is the sampling that includes the derivation of sampling theorem 

and related issues of aliasing and reconstructing the message signal from its sampled 

version.    

 

 

 

 

 

 

Fig: System for generating a flat-topped PAM signal 

 

The sampling theorem in the context of PAM is in two equivalent parts as follows: 

 1)   A band-limited signal of finite energy that has no radian frequency components higher 

than ωm is uniquely determined by the values of the signal at instant of time separated 

by π / ωm seconds. 

2)   A band-limited signal of finite energy that has no radian frequency components higher 

than ωm may be completely recovered from knowledge of its samples taken at the rate 

of ωm / π per seconds.  

Part 1 of sampling theorem is exploited in the transmitter of a PAM system and part 2, in the 

receiver of the system. The special value of the sampling rate ωm / π is referred to as the 

Nyquist rate. To combat the effect of aliasing in practice, we use two corrective measures: 

 Prior to sampling, a low pass anti-aliasing filter is used to attenuate high frequency 

component of the signal which lie outside the band of interest.  

 The filtered signal is sampled at a rate slightly higher than the Nyquist rate. 

 

 

Low-pass 

antialiasing 

filter 

Message 

signal m(t) 

Sample-

and-hold 

circuit 

Sampled 

signal 

Timing pulse 

generator 
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Mathematical description of PAM: 

PAM is a form of pulse modulation, in which the amplitude of the pulsed carrier is varied in 

accordance with instantaneous sample values of the message signal. 

 

 

Fig: Wave form of flat topped PAM signal 

For a mathematical representation of PAM signal s(t) for a message signal m(t), we may 

write 

𝑠 𝑡 =  𝑚[𝑛]ℎ(𝑡 − 𝑛

∞

𝑛=−∞

𝑇𝑠) 

Where,  Ts     sampling period 

  m[n]    the value of message signal m(t) at time t=nTs 

  h(t)     a rectangular pulse of unit amplitude and duration T0 

The impulse sampled version of the message signal m(t) is given by  

𝑚𝛿 𝑡 =  𝑚[𝑛]𝛿(𝑡 − 𝑛

∞

𝑛=−∞

𝑇𝑠) 

The PAM signal is expressed as     

𝑠 𝑡 =  𝑚[𝑛]ℎ(𝑡 − 𝑛

∞

𝑛=−∞

𝑇𝑠) 

              =  𝑚𝛿 𝑡  ∗ ℎ(𝑡) 

The above equation states that s(t) is mathematically equivalent to the convolution of  𝑚𝛿 𝑡  

- the impulse sampled version of m(t) – and the pulse h(t). 
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Multiplexing:  

Modulation provides a method for multiplexing whereby message signal derived from 

independent sources are combined into a composite signal suitable for transmission over a 

common channel. 

In telephone system, the signals from different speakers are combined in such a way that 

they do not interfere with each other during transmission and so that they can be separated at 

the receiving end. 

Multiplexing can be accomplished by separating different message signals either in 

frequency, or time, or through the use of coding techniques. Thus, there are three basic types 

of multiplexing, viz: 

a)  Frequency-division multiplexing: In this type of multiplexing, the signals are separated 

by allocating them to different frequency bands. FDM favours use of CW modulation, where 

each message signal is able to use the channel on a continuous-time basis. 

        

 

  Fig:  (a)  Frequency-division multiplexing       (b)   Time-division multiplexing  

 

b)  Time-division multiplexing: Here, the signals are separated by allocating them to 

different time slots within a sampling interval . TDM favours the use of pulse modulation, 

where each message signal has access to the complete frequency response of the channel. 

c)  Code-division multiplexing: It relies on  the assignment of different codes to the 

individual users of the channel. 
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a)  Frequency-division multiplexing: The block diagram of FDM system is shown below. 

The low pass filters are used for band limiting the input signals. The filtered signals are 

applied to modulators that shift the frequency ranges of the signals so as to occupy mutually 

exclusive frequency intervals. The band pass filters following the modulators are used to 

restrict the band of each modulated wave to its prescribed range. Next, the resulting band 

pass filters are summed to form the input to the common channel. At the receiving terminal, 

a bank of band pass filters, with their inputs, connected in parallel, is used to separate the 

message signal on a frequency occupancy basis. Finally, the original message signals are 

recovered by individual demodulators.   

 

       

 

Fig: Block diagram of FDM system 

 

b)  Time-division multiplexing: The basic operation of a TDM system is the sampling 

theorem, which states that we can transmit all the information contained in a band limited 

message signal by using samples of the signal taken uniformly at a rate that is usually higher 

than the Nyquist rate. The important feature of the sampling process is conservation of time 

i.e., the transmission of the message samples engages the transmission channel for only a 

fraction of sampling interval on a periodic basis, equal to the width T0 of a PAM modulating 
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pulse. In this way, some of the time interval between adjacent samples is cleared for use by 

other independent message sources on a time shared basis. 

  

Fig: Block diagram of TDM system 

The concept of TDM is illustrated by the above block diagram.  

 Each input message signal is first restricted in band width by a low pass filter to remove 

the frequency that is non essential to an adequate representation of the signal. 

 LPF output applied to a commutator that is usually implemented by means of electronic 

switching circuitry. 

 The function of the commutator is two fold. 1) to take a narrow sample of each of the M 

input message signal at a rate 1/Ts i.e., slightly higher than ωc / π, where ωc is the cut off 

frequency of LPF. 2) to sequentially interleave these M samples inside a sampling 

interval Ts. 

 The multiplexed signal is applied to a pulse modulator that transforms it into a form 

suitable for transmission over a common channel.  

 At receiver, the signal is applied to a pulse demodulator which performs inverse 

operation of pulse modulator. 

 The narrow samples produced are distributed to the appropriate low pass reconstruction 

filter by decommutator. 

 Synchronization between timing operation of the transmitter and receiver in a TDM 

system is essential for satisfactory performance of the system. 

 Synchronization may be achieved by inserting an extra pulse into each sampling 

interval on regular basis.  

 The combination of M PAM signals and a synchronization pulse combined in a single 

sampling period is referred to as a  frame synchronization.  
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Phase and Group delay: 

Whenever a signal is transmitted a through a frequency-selective system, such as 

communication channel, some delay is introduced into the output signal in relation to the 

input signal. The delay is determined by the phase response of the system.  

Let the phase response of a dispersive communication channel is represented by: 

υ (ω) = arg{H(jω)}, where H(jω) frequency response of the channel 

Suppose that a sinusoidal signal is transmitted through the channel at a frequency ωc . 

The signal received at the channel output lags the transmitted signal by υ(ωc) radians. 

The time delay corresponding to this phase lag, which is known as phase delay (τp): 

𝜏𝑝 = −
𝜑(𝜔𝑐)

𝜔𝑐
,   where minus sign (-) denotes the lag.  

Note: The phase delay is not necessarily the true signal delay. 

Let us consider a transmitted signal 

s(t) = A cos (ωct) cos (ω0t), 

consisting of a DSB-Sc modulated wave with carrier frequency ωc and sinusoidal 

modulation frequency  ω0. 

Expressing the modulated signal s(t) in terms of its upper and lower side frequencies, it may 

be written as: 

s(t) =
1

2
 A cos (ω1t) + 

1

2
 A cos (ω2t) 

where,              ω1 = ωc + ω0      and      ω2 = ωc - ω0 

If ω0 << ωc  => side frequencies ω1 & ω2  are close together, with ωc between them. Such a 

modulated signal is called narrowband signal. The phase response υ (ω) may be 

approximated in the vicinity of ω= ωc  by the two-term Taylor series expansion 

 

The time delay incurred by the message signal (i.e., the envelope of the modulated signal) is 

given by: 

 

The time delay τg is called the group delay or envelope delay. The group delay is defined as 

the negative of the derivative of the phase response υ (ω) of the channel with respect to ω , 

evaluated at the carrier frequency ωc.  

Note: The time delay is a true signal delay. Page 73



 

For wide-band modulated signal, the frequency components of the message signal are 

delayed by different amounts at the channel output. Consequently, the message signal 

undergoes a form of linear distortion known as delay distortion. To reconstruct a faithful 

version of the original message signal in the receiver, we have to use a delay equalizer. This 

equalizer has to be designed in such a way that when it is connected in cascade with the 

channel, the overall group delay is constant.  

  Introduction to the Laplace Transform 
 Fourier transforms are extremely useful in the study of many problems of practical 

importance involving signals and LTI systems. 

 They are purely imaginary complex exponentials e
st
, s=jω  

 A large class of signals can be represented as a linear combination of complex 

exponentials and complex exponentials are eigenfunctions of LTI systems. 

 However, the eigenfunction property applies to any complex number s, not just purely 

imaginary (signals). 

 This leads to the development of the Laplace transform where s is an arbitrary complex 

number. 

 Laplace and z-transforms can be applied to the analysis of un-stable system (signals 

with infinite energy) and play a role in the analysis of system stability  

 The response of an LTI system with impulse response h(t) to a complex exponential 

input, x(t)=e
st
, is 

 

where s is a complex number and  

 

 

when s is purely imaginary, this is the Fourier transform, H(jω) 

when s is complex, this is the Laplace transform of h(t), H(s) 

The Laplace transform of a general signal x(t) is: 

 

 

and is usually expressed as: 

 

 

Laplace and Fourier Transform 

The Fourier transform is the Laplace transform when s is purely imaginary: 

 

 

An alternative way of expressing this is when s = σ+jω  

 
 

 

 

 

 

 

 

The Laplace transform is the Fourier transform of the transformed signal x‟(t) = x(t)e
-σt

. 

Depending on whether σ is positive/negative this represents a growing/negative signal
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Example 1: Laplace Transform 

 

Consider the signal 

The Fourier transform X(jω) converges for a>0: 

 

 

The Laplace transform is: 

 

 

 

 

 

which is the Fourier Transform of e
-(σ+a)t

u(t) 

 

Or 

 

 

 

If a is negative or zero, the Laplace Transform still exists 

Example 2: 

Consider the signal  

The Laplace transform is: 

 

 

 

 

 

 

 

Convergence requires that Re{s+a}<0 or Re{s}<-a. 

The Laplace transform expression is identical to Example 1 (similar but different signals), 

however the regions of convergence of s are mutually exclusive (non-intersecting). 

For a Laplace transform, we need both the expression and the Region Of Convergence 

(ROC).  

Example 3:  

The Laplace transform of the signal x(t) = sin(ωt)u(t) is: 
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Fourier Transform does not Converge … 

It is worthwhile reflecting that the Fourier transform does not exist for a fairly wide class of 

signals, such as the response of an unstable, first order system, the Fourier transform does 

not exist/converge 

E.g. x(t) = e
at

u(t),   a>0 

𝑋 𝑗𝜔 =  𝑒𝑎𝑡
∞

0

𝑒−𝑗𝜔𝑡 𝑑𝑡 

does not exist (is infinite) because the signal‟s energy is infinite 

This is because we multiply x(t) by a complex sinusoidal signal which has unit magnitude 

for all t and integrate for all time.  Therefore, as the Dirichlet convergence conditions say, 

the Fourier transform exists for most signals with finite energy. 

Region of Convergence: 

The Region Of Convergence (ROC) of the Laplace transform is the set of values for s 

(=s+jω) for which the Fourier transform of x(t)e
-σt

 converges (exists). 

The ROC is generally displayed by drawing separating line/curve in the complex plane, as 

illustrated below for Examples 1 and 2, respectively. 

               
The shaded regions denote the ROC for the Laplace transform 

Example 4: 

Consider a signal that is the sum of two real exponentials: 

 

 

The Laplace transform is then: 

 

 

 

 

 

Using Example 1, each expression can be evaluated as: 

 

 

 

 

The ROC associated with these terms are Re{s}>-1 and Re{s}>-2.  Therefore, both will 

converge for Re{s}>-1, and the Laplace transform: 
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Ratio of Polynomials: 

In each of these examples, the Laplace transform is rational, i.e. it is a ratio of polynomials 

in the complex variable s. 

 

 

where N and D are the numerator and denominator polynomial respectively. 

 

In fact, X(s) will be rational whenever x(t) is a linear combination of real or complex 

exponentials.  Rational transforms also arise when we consider LTI systems specified in 

terms of linear, constant coefficient differential equations. 

We can mark the roots of N and D in the s-plane along with the ROC 

 

Example 3: 

 
 

 

Poles and Zeros: 

 

The roots of N(s) are known as the zeros.  For these values of s, X(s) is zero.  

 

The roots of D(s) are known as the poles.  For these values of s, X(s) is infinite, the Region 

of Convergence for the Laplace transform cannot contain any poles, because the 

corresponding integral is infinite. 

 

The set of poles and zeros completely characterise X(s) to within a scale factor (+ ROC for 

Laplace transform) 

 

 

 

The graphical representation of X(s) through its poles and zeros in the s-plane is referred to 

as the pole-zero plot of X(s) 

 

Example: 

Consider the signal:   

 

 

By linearity we can evaluate the second and third terms   
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The Laplace transform of the impulse function is: 

 

 

 

The Laplace transform of the impulse function is: 

 

 

 

 

 

 

which is valid for any s.  Therefore,  

 

 
 

ROC Properties for Laplace Transform: 

 

Property 1: The ROC of X(s) consists of strips parallel to the jω-axis in the s-plane 

Because the Laplace transform consists of s for which x(t)e
-σt

 converges, which only 

depends on Re{s} = σ 

Property 2: For rational Laplace transforms, the ROC does not contain any poles 

Because X(s) is infinite at a pole, the integral must not converge. 

Property 3: if x(t) is finite duration and is absolutely integrable then the ROC is the entire s-

plane. 

Because x(t) is magnitude bounded, multiplication by any exponential over a finite interval 

is also bounded.  Therefore the Laplace integral converges for any s. 

 

Inverse Laplace Transform: 

 

The Laplace transform of a signal x(t) is: 

 

 

We can invert this relationship using the inverse Fourier transform 

 

 

Multiplying both sides by e
σt

: 
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Therefore, we can recover x(t) from X(s), where the real component is fixed and we 

integrate over the imaginary part, noting that ds = jdω  

 

 

 

Inverse Laplace Transform Interpretation: 

 

Just about all real-valued signals, x(t), can be represented as a weighted, X(s), integral of 

complex exponentials, e
st
. 

 

 

The contour of integration is a straight line (in the complex plane) from σ-j to σ+j (we 

won‟t be explicitly evaluating this, just spotting known transformations). We can choose 

any s for this integration line, as long as the integral converges  

For the class of rational Laplace transforms, we can express X(s) as partial fractions to 

determine the inverse Fourier transform. 

 

                                                                                       
  

         

                 
 

 

Example 1: Inverting the Laplace Transform 

 

Consider when 

 

 

 

Like the inverse Fourier transform, expand as partial fractions 

 

 

 

Pole-zero plots and ROC for combined & individual terms 
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Example 2: Consider when 

 

 

 

Like the inverse Fourier transform, expand as partial fractions 

 

 

 

Pole-zero plots and ROC for combined & individual terms 

 

 

 

 

 

 

 

 

 

Laplace Transform Properties:  

a)   Linearity property: 

 

       If       ROC = R1 

       and                 ROC = R2 

       then           ROC= R1R2 

 

This follows directly from the definition of the Laplace transform (as the integral operator is 

linear).  It is easily extended to a linear combination of an arbitrary number of signals. 

 

b)   Time Shifting property: 

         If        ROC=R  

         then                                                  ROC=R 

         Proof:   

    

         Now replacing t by t-t0 

 

 

          

  

Recognising this as    

A signal which is shifted in time may have both the magnitude and the phase of the Laplace 

transform altered. 
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Example: Linear and Time Shift      

Consider the signal (linear sum of two time shifted sinusoids) 

 

where x1(t) = sin(ω0t)u(t). 

Using the sin() Laplace transform example 

  

 

 

Then using the linearity and time shift Laplace transform properties 

          

 

 

c)   Convolution property: 
The Laplace transform also has the multiplication property, i.e. 

       ROC = R1 

       ROC = R2 

        

ROC  R1R2 

 

roof is “identical” to the Fourier transform convolution 

Note that pole-zero cancellation may occur between H(s) and X(s) which extends the ROC 

 

 

 

 

 

 

Example 1: First order input & First order system impulse response 

Consider the Laplace transform of the output of a first order system when the input is an 

exponential (decay?) 

      (Solved with Fourier transforms when a,b>0) 

 

Taking Laplace transforms 

 

 

 

Laplace transform of the output is 
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Splitting into partial fractions 

 

 

and using the inverse Laplace transform 

 

Note that this is the same as was obtained earlier, expect it is valid for all a & b, i.e. we can 

use the Laplace transforms to solve ODEs of LTI systems, using the system‟s impulse 

response 

 

Example 2: Sinusoidal Input 

 

Consider the 1
st
 order (possible unstable) system response with input x(t) 

 

 

Taking Laplace transforms 

 

 

 

The Laplace transform of the output of the system is therefore  

 

 

 

 

 

and the inverse Laplace transform is 

 

 

 

d)  Differentiation in the Time Domain: 

Consider the Laplace transform derivative in the time domain 

    ROC = R 

   

   

   ROC R 

sX(s) has an extra zero at 0, and may cancel out a corresponding pole of X(s), so ROC may 

be larger 

Widely used to solve when the system is described by LTI differential equations 
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Example: System Impulse Response 

 

Consider trying to find the system response (potentially unstable) for a second order system 

with an impulse input x(t)=δ(t), y(t)=h(t) 

 

 

Taking Laplace transforms of both sides and using the linearity property 

 

 

 

 

 

 

 

where r1 and r2 are distinct roots, and calculating the inverse transform 

 

The general solution to a second order system can be expressed as the sum of two complex 

(possibly real) exponentials. 
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The z-Transform 
 
 

It plays the same role in the analysis of discrete time signals & LTI systems as the 

Laplace transform does in the analysis of continuous time signal and LTI systems. The 

most important one is, in the z-domain, the convolution of two time domain signals is 

equivalent to multiplication of their corresponding z transforms. 
 
 

Definition:   

The z-transform of a discrete-time signal x[n] is: 

 

𝑋 𝑧 =  𝑥 𝑛 𝑧−𝑛

∞

𝑛=−∞

 

We denote the z-transform operation as 
 

x[n] ←→ X (z). 
 

In general, the number z in X(z) is a complex number.  Therefore, we may write z as 
 

z = rejw , 

where r is the radius of the circle. When r = 1, (7.1) becomes 

 

𝑋 𝑒𝑗𝜔  =  𝑥 𝑛 𝑒−𝑗𝜔𝑛

∞

𝑛=−∞

 

which is the  discrete-time  Fourier  transform  of x[n].   Therefore, DTFT is a special 

case of the z-transform.  Hence, we can view DTFT as the z-transform is evaluated on 

the unit  circle.  (figure below) 

 
 

 
 

 

 
 

Figure 7.1:  Complex z-plane.  The z-transform reduces to DTFT for values of z on 

the unit  circle. 
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When r ≠ 1, the z-transform is equivalent to 
                                  

𝑋 𝑟𝑒𝑗𝜔  =  𝑥 𝑛 (

∞

𝑛=−∞

𝑟−𝑛𝑒−𝑗𝜔𝑛 ) 

 

                       

                           =  [𝑥 𝑛 

∞

𝑛=−∞

𝑟−𝑛 ]𝑒−𝑗𝜔𝑛  

      

                 = ℱ [r
−n 

x(n)],     

  

which is the DTFT  of the signal r-n x[n].  However, from the development of DTFT 

we know that DTFT does not always exist.  It exists only when the signal is square 

summable, or satisfies the  Dirichlet  conditions.    Therefore,  X (z)  does not  always 

converge.  It converges only for some values of r. This range of r is called the region 

of convergence. 
 

 
ROC:  The Region of Convergence (ROC)  of the z-transform is the value of 

z such that X (z) converges, i.e., 
 

 

 

 ∣ 𝑥 𝑛 ∣

∞

𝑛=−∞

𝑟−𝑛 < ∞ 

 

Example1:  Consider the signal x[n] = an u[n], with 0 < a < 1. The z-transform of 

x[n] is 

 

        𝑋 𝑧 =  𝑎𝑛

∞

−∞

𝑢[𝑛 ]𝑧−𝑛   

=  (

∞

𝑛=0

𝑎𝑧−1)𝑛  

 

Therefore, X(z) converges if  (𝑎∞
𝑛=0 𝑧−1)𝑛  <∞. From geometric series, we know that 

 

 (𝑟∞
𝑛=0 𝑧−1)𝑛  = 

1

1−𝑎𝑧−1
                                     

           

when |az-l |  < 1, or equivalently  |z|  > |a| .  So, 
 

X (z) = 
1 

, 
1 - ax-l

 

with ROC being the set of z such that  |z|  > |a| .  
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Figure 7.2: Pole-zero plot and ROC of Example 1. 

 

Note: ROC of casual and infinite sequence is the exterior of a circle having radius | a| .  
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Example2:    Consider the signal x[n] = -an u[-n -1] with  0 < a <1.   The 

z-transform of x[n] is 
 

                       𝑋 𝑧 = −  𝑎𝑛  

∞

𝑛=−∞

𝑢[−𝑛 − 1]𝑧−𝑛  

                 = −  𝑎𝑛  

−1

𝑛=−∞

𝑧−𝑛  

               = −  𝑎−𝑛  

∞

𝑛=−1

𝑧𝑛  

                   = 1 −  (𝑎−1 

∞

𝑛=0

𝑧)𝑛 

 

Therefore, X (z) converges when |a-lz|  < 1, or equivalently |z|  < |a| .  In this case, 
 

1                  1 
X (z) = 1 - 

1 - a-lz  
= 

1 - az-l 
,
 

with ROC  being the  set of z such that  |z|< |a| .   Here, the z-transform is same as 

that of Example 1,  the  only difference being  ROC.   Example 2 is just the left-sided 

version of Example 1. 
 

 

 
 

Figure 7.3: Pole-zero plot and ROC of Example 2. 

 

 

Properties of ROC 
 

(1)  The ROC is a ring or disk in the z-plane centered at origin. 

 

(2)  DTFT of x[n] exists if and only if ROC includes the unit circle. 
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O 

Proof:  By definition, ROC is the set of z such that X (z) converges. DTFT is the z- 

transform evaluated on the unit circle. Therefore, if ROC includes the unit circle, then 

X (z) converges for any value of z on the unit circle i.e., DTFT converges. 
 

(3)   The ROC does not contain any pole. 

(4)   If x[n] is a right-sided sequence, then ROC extends outward from the outermost   

pole. 

(5)  If x[n] is a left-sided sequence, then ROC extends inward from the innermost pole. 
                                                                                                      

(6)   If x (n) is a causal sequence, then the ROC is the entire z plane except at z = 0. 

 

(7)   If x (n) is a non-causal sequence, then the ROC is the entire z plane except at z = ∞. 

 

(8)   If x (n) is an infinite duration, two sided sequence; the ROC will consist of a ring in the  

z   plane, bounded on the interior or exterior by a pole, not containing any pole. 

(9)   The ROC of a LTI stable system contains the unit circle. 

.
 

Properties of z-transform 

 Linearity: 

If x1(n)↔ X1(z) and x2(n) ↔ X2(z), then 

 axl[n] + bx2[n] ←→ aXl(z) + bX2(z) 

 

 Time reversal: 

If x(n) ↔ X(z), then 

x(-n) ) ↔ X(z
-1

)  

 

 Time shift: 

If x(n)↔ X(z), then 

x[n - nO ] ←→ X (z)z
-n

0, Where n0 is an integer. 
  

 Multiplication by α
n
:
 
 

If x(n) ↔ X(z), then 

[a
n
x(n)] x(n)↔ X(z) X(a

-1
z) 

 

 Convolution:   

If x(n)↔ X(z), h(n)↔ H(z), then 

[x(n) * h(n)] ↔ X(z) H(z) 

 

 Differentiation in the z-domain: 

If x(n)↔ X(z), then 

[nx(n)] )↔ -z 
𝑑

𝑑𝑧
 X(z) 
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l-z-l
 

l-az-l
 

l-az-l
 

z-transform Pairs 
 
7.2.1   A.  Table 10.2 

1. δ[n] ←→ 1, all z 

2. δ [n - m] ←→ z-m , all z except 0 when m > 0 and ∞ when m < 0. 

3. u[n] ←→    l    , |z|  > 1 
 

4. an u[n] ←→    l     , |z|  > a 
 

5. -an u[-n - 1] ←→    l     , |z|  < |a| . 
 

6. x∗[n] ←→ X ∗(z∗) 

 

Inverse z-transform: 

 
Three different methods are: 

(1) Partial fraction method 

(2) Power series method 

(3) Long division method 

 

Partial fraction method: 

 In case of LTI systems, commonly encountered form of z-transform is 

𝑋 𝑧 =  
𝐵(𝑧)

𝐴(𝑧)
 

                                                

𝑋 𝑧 =  
𝑏0+𝑏1𝑧

−1+⋯+ 𝑏𝑀𝑧−𝑀

𝑎0+𝑎1𝑧
−1+⋯+ 𝑎𝑁𝑧

−𝑁
 

Usually M<N 

 If M>N, then long division method is used & X(z) is expressed in the 

form  

X z =  fk𝑧
−k

𝑀−𝑁

𝑘=0

+
𝐵(𝑧)

𝐴(𝑧)
 

 

    Where B(z) has now the order one less than the denominator 

polynomial and partial fraction method is used to find z transform. 

 The inverse z-transform of the terms in the summation are obtained from the 

transform pair and time shift property 

 

δ[n] ←→ 1 

δ [n - m] ←→ z-m 

 If X(z) is expressed as ratio of polynomials in z instead of z-1, then it 

is converted to the polynomial of z-1. 

 Convert the denominator into the product of first-order terms  
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𝑋 𝑧 =  
𝑏0+𝑏1𝑧

−1+⋯+ 𝑏𝑀𝑧−𝑀

𝑎0  (1 −𝑁
𝑘=1 𝑑𝑘𝑧

−1)
 

  

   Where dk are the poles of X(z). 

 

For distinct poles: 

 For all distinct poles, the X(z) can be written as 

  

𝑋 𝑧 =   
𝐴𝑘

(1 −𝑑𝑘𝑧
−1)

𝑁

𝑘=1

 

 Depending on ROC, the inverse z-transform associated with each term is then is 

determined by using the appropriate transform pair. We get 

 

                            Ak(dk)
n
u[n] ←→ 

𝐴𝑘

(1−𝑑𝑘𝑧
−1)

 With ROC z > dk  

 

     - Ak(dk)
n
u[-n-1] ←→ 

𝐴𝑘

(1−𝑑𝑘𝑧
−1)

 With ROC z < dk 

 
 

 For each term the relationship between the ROC associated with X(z) and each 

pole determines whether the right sided or left sided inverse transform is selected.

 
 
 For repeated poles: 

For Repeated poles 

 If pole di is repeated r times, then there are r terms in the partial fraction expansion 

associated with that pole.   

 
𝐴𝑖1

1 − 𝑑𝑖𝑧−1,
  

𝐴𝑖1
(1 − 𝑑𝑖𝑧−1  )2 

… . .
𝐴𝑖1

(1 − 𝑑𝑖𝑧−1)𝑟
 

 Here if X(z) with ROC |z|  > d i , then  the right sided inverse transform is chosen & 

if X(z) with ROC |z|  < d i , then  the left sided inverse transform is chosen. 

 

Example:  Find the inverse z transform of 

                                                  

𝑋 𝑧 =  
1 + 3𝑧−1

1 + 3𝑧−1+𝑎2𝑧
−2

  z > 2 

 

 

 

 

Solution: First we eliminate the negative power by multiplying numerator & 

denominator by z
2
.  

   

    𝑋 𝑧 =  
𝑧( 𝑧+3)

𝑧2+3𝑧+2
 

  

Dividing X(z) by z we get 

    
𝑋 (𝑧)

𝑧
=

𝑧+3

 𝑧+1 (𝑧+2)
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The above equation can be written in partial fraction form                                 
 

                                                

𝑋   𝑧 

𝑧
=

𝐶1

 𝑧+1 
+

𝐶2

 𝑧+2 
 

Where, C1 = (z+1) 
𝑋(𝑧)

𝑧
 |𝑧=−1 = 2  

Similarly, C1 = (z+2) 
𝑋(𝑧)

𝑧
 |𝑧=−2 = -1 

Therefore,  
𝑋  𝑧 

𝑧
=

2

 𝑧+1 
−

1

 𝑧+2 
 

       X(z)= 2
𝑧

 𝑧+1 
−

𝑧

 𝑧+2 
 

As ROC is  z > 2,  the sequence is causal and we find 

 x (n )=  2  ( -1 )
n
u(n ) - ( -2 )

n
u(n )  

 

Power series method: 

 Express X(z) as a power series in z
-1

 or z as given in z-transform equation. 

 The values of the signal x[n] are then given by coefficient associated with z
-n

. 

 Main disadvantage is : limited to one sided signals. 

 Signals with ROCs of the form |z|  > a or |z|  < a. 

 If ROC is |z|  > a, then express X(z) as a power series in z
-1

 and we get 

right sided signal. 

 If ROC is |z|  < a, then express X(z) as a power series in z and we get 

left sided signal.   

 

Long division method: 

 

  Find the z-transform of

                                    𝑋 𝑧 = 
2+𝑧−1

1−
1
2
𝑧
−1 , with ROC | z|  > 

1

2
  

 
 Solution: since ROC indicates that x[n] is right sided sequence, use long division method 

to write X(z) as a power series in z
-1

. 

 

 We get 

 

X(z) = 2+2z
-1

+z
-2

+ 
1

2
 z

-3
+…… 

 

  Comparing with z-transform pair, we get 

 

x (n )=  2δ (n )+  2δ(n -1 )+  δ(n -2 )+  
1

2
 δ(n -3)+………  
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 If we change the ROC to |z|  < 
1

2
 , then expand X(z) as a power series in z 

using long division method , we get 

 

     X(z) =  - 2 - 8z - 16z
2 
- 32z

-3
+…… 

 

 Now we get x(n) as 

 

    x (n )=  -2δ(n ) -8δ(n+1) -16δ(n+2)+  32δ(n+3)+………  
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