LECTURENOTES

COMPUTER ORGANIZATION AND ARCHITYECTURE

B.Tech, 4THSemester,CSE

Prepared by:
MRS SANJUKTA URMA

Lecturer in Computer Science & Engineering

Vikash Institute of Technology Bargarh
(Approved by AICTE, New Delhi & Affiliated to BPUT, Odisha)
BarahagudaCanalChowk,Bargarh,Odisha-768040

www.Vitbargarh.ac.in

http://www.vitbargarh.ac.in/

DISCLAIMER

» This document does not claim any originality and cannot be
used as a substitute for prescribed textbooks.

» The information presented here is merely a collection by Mrs.
SANJUKTA URMA with the inputs of students for their
respective teaching assignments as an additional tool for the
teaching- learning process.

» Various sources as mentioned at the reference of the
document as well as freely available materials from internet
were consulted for preparing this document.

» Further, this document is not intended to be used for
commercial purpose and the authors are not accountable for
any issues, legal or otherwise, arising out of use of this
document.

» The author makes no representations or warranties with
respect to the accuracy or completeness of the contents of this
document and specifically disclaims any implied warranties
of merchantability or fitness for a particular purpose.

*hkkhkkikk

COURSECONTENT

COMPUTER ORGANIZATION AND ARCHITYECTURE
B.Tech, 4THSemester, CSE

» Module-1: FUNDAMENTAL BLOCK OF A COMPUTER

Functional blocks of a computer: CPU, memory, input-output subsystems, control Unit, Overview of
Computer Architecture and Organization: Fundamentals of computer architecture, Organization of Von
Neumann machine, Basic operation concepts, Performance and Historical perspective, Instruction set
architecture of a CPU-registers, instruction execution cycle, RTL interpretation of instructions,
addressing modes, instruction set.

» Module-11: DATA REPRESENTATION

Data representation: signed number representation, fixed and floating point representations, character
representation. Computer arithmetic - integer addition and subtraction, ripple carry adder, carry look-
ahead adder, etc. multiplication - shift and add, Booth multiplier, carry save multiplier, etc. Division
restoring and non-restoring techniques, floating point arithmetic.

» Module-111: CPU CONTROL UNIT DESIGN
CPU control unit design: hardwired and micro-programmed design approaches, Memory system design:
semiconductor memory technologies, Memory Organization- Memory Hierarchy, Main Memory,
Auxiliary memory, Associate Memory, Cache Memory.
Peripheral devices and their characteristics: 1/0 subsystems, 1/0 device interface, 1/O transfers-program
controlled, Asynchronous data transfer, Modes of Transfer, interrupt driven and DMA,
Privileged and non-privileged instructions, software interrupts and exceptions. Programs and
Processes-role of interrupts in process state transitions, 1/0 device interfaces - SCII, USB

>

» Module-IVREDUCE INSTRUCTION SET COMPUTER

Reduced Instruction Set Computer: CISC Characteristics, RISC Characteristics.

Pipeline and Vector Processing: Pipelining: Basic concepts of pipelining, throughput and speedup,
pipeline hazards. Vector Processing, Array Processor.

Multi Processors: Characteristics of Multiprocessors, Interconnection Structures, Inter-processor
arbitration, Inter-processor communication and synchronization, Cores, and Hyper-Threading ,Cache
Coherence.

» Module-V: MEMORY ORGANIZATION
Memory organization: Memory interleaving, concept of hierarchical memory organization, cache
memory, cache size vs. block size, mapping functions, replacement algorithms, write policies.

*hkkhkkikk

REFERENCES

COMPUTER ORGANIZATION AND ARCHITYECTURE
B.Tech,4™Semester,CSE

Books:

o 1 “Computer Organization and Embedded Systems”, 6th Edition by Carl[Hamacher,
McGraw Hill Higher Education.

o 2.“Computer Organization and Architecture: Designing for Performance”, 10th Edition by
William Stallings, Pearson Education.

e 3.“Computer Architecture and Organization”, 3rd Edition by John P. Hayes,
WCB/McGraw-Hill

e 4.“Computer Organization and Design: The Hardware/Software Interface”, 5th Edition by

David A. Patterson and John L. Hennessy, Elsevier.

MODULE-1

Functional blocks of a computer:

A computer consists of five functionally independent main parts:

input
memory
arithmetic and logic

output

o ~ w nhoE

control unit

Memory
Arithmetic
Input and
logic
Interconnection
network
Output Control
/O Processor

Fig:Basic functional units of a computer.

1. The input unit accepts coded information from human operators using devices such as keyboards,
or from other computers over digital communication lines.

2. The information received is stored in the computer’s memory, either for later use or to be
processed immediately by the arithmetic and logic unit.

3. The processing steps are specified by a program that is also stored in the memory.

4. Finally, the results are sent back to the outside world through the output unit. All of these actions
are coordinated by the control unit.

5. An interconnection network provides the means for the functional units to exchange information

and coordinate their actions.

A program is a list of instructions which performs a task. Programs are stored in the memory.The

processor fetches the program instructions from the memory, one after another, and perform the desired

operations. The computer is controlled by the stored program, except for possible external interruption by

an operator or by 1/0O devices. The instructions and data handled by a computer is encoded as a string of

binary bits.

Input Unit: Computers accept coded information through input units. The most common input
device is the keyboard. Whenever a key is pressed, the corresponding letter or digit is
automatically translated into its corresponding binary code and transmitted to the processor.
Microphones can be used to capture audio input which is then sampled and converted into digital
codes for storage and processing. Similarly, cameras can be used to capture video input.

E.g.: touchpad, mouse, joystick

Memory Unit:

The function of the memory unit is to store programs and data. There are two classes of storage, called

primary and secondary.

Primary Memory: Primary memory, also called main memory, is a fast memory that operates at

electronic speeds. Programs must be stored in this memory while they are being executed. The
memory consists of a large number of semiconductor storage cells, each capable of storing one bit
of information. The memory is organized so that one word can be stored or retrieved in one basic
operation. The number of bits in each word is referred to as the word length of the computer,
typically 16, 32, or 64 bits. To provide easy access to any word in the memory, a distinct address
is associated with each word location. Addresses are consecutive numbers, starting from 0, that
identify successive locations. A particular word is accessed by specifying its address and issuing a
control command to the memory that starts the storage or retrieval process. Instructions and data
can be written into or read from the memory under the control of the processor. A memory in
which any location can be accessed in a short and fixed amount of time after specifying its address
is called a random-access memory (RAM). The time required to access one word is called the

memory access time. This time is independent of the location of the word being accessed.

Cache Memory: As an adjunct to the main memory, a smaller, faster RAM unit, called a cache, is

used to hold sections of a program that are currently being executed, along with any associated
data. The cache is tightly coupled with the processor and is usually contained on the same
integrated-circuit chip. The purpose of the cache is to facilitate high instruction execution rates. At
the start of program execution, the cache is empty. As execution proceeds, instructions are fetched

into the processor chip, and a copy of each is placed in the cache. When the execution of an
7

instruction requires data located in the main memory, the data are fetched and copies are also
placed in the cache.

Secondary Storage: Although primary memory is essential, it tends to be expensive and does not

retain information when power is turned off. Thus additional, less expensive, permanent
secondary storage is used when large amounts of data and many programs have to be stored,
particularly for information that is accessed infrequently. Access times for secondary storage are
longer than for primary memory. A wide selection of secondary storage devices is available,
including magnetic disks, optical disks (DVD and CD), and flash memory devices.

Arithmetic and Logic Unit: Most computer operations are executed in the arithmetic and logic unit

(ALU) of the processor. Any arithmetic or logic operation, such as addition, subtraction, multiplication,
division, or comparison of numbers, is initiated by bringing the required operands into the processor,
where the operation is performed by the ALU. For example, if two numbers located in the memory are to
be added, they are brought into the processor, and the addition is carried out by the ALU. The sum may
then be stored in the memory or retained in the processor for immediate use. When operands are brought
into the processor, they are stored in high-speed storage elements called registers. Each register can store

one word of data.

Output Unit: The output unit is the counterpart of the input unit. Its function is to send processed results
to the outside world. A familiar example of such a device is a printer. Some units, such as graphic
displays, provide both an output function, showing text and graphics, and an input function, through touch

screen capability.

Control Unit: The memory, arithmetic and logic, and I/O units store and process information and
perform input and output operations. The operation of these units must be coordinated in some way. This
is the responsibility of the control unit. The control unit is effectively the nerve center that sends control
signals to other units and senses their states. Control circuits are responsible for generating the timing
signals that govern the transfers and determine when a given action is to take place. In practice, much of
the control circuitry is physically distributed throughout the computer. A large set of control lines (wires)

carries the signals used for timing and synchronization of events in all units.

Basic Operational Concepts

To perform a given task, an appropriate program consisting of a list of instructions is stored in the
memory. Individual instructions are brought from the memory into the processor, which executes the
specified operations. Data to be used as instruction operands are also stored in the memory. A typical

instruction might be

Load R2, LOC

This instruction reads the contents of a memory location whose address is represented symbolically by the
label LOC and loads them into processor register R2.The original contents of location LOC are preserved,

whereas those of register R2 are overwritten. Execution of this instruction requires several steps.

1. . First, the instruction is fetched from the memory into the processor.

2. Next, the operation to be performed is determined by the control unit.

3. The operand at LOC is then fetched from the memory into the processor.
4. Finally, the operand is stored in register R2.

Let us consider another example
Add R4, R2, R3

This instruction adds the contents of registers R2 and R3, then places their sum into register R4. The
operands in R2 and R3 are not altered, but the previous value in R4 is overwritten by the sum. After
completing the desired operations, the results are in processor registers. They can be transferred to the

memory using instructions such as
Store R4, LOC

This instruction copies the operand in register R4 to memory location LOC. The original contents of
location LOC are overwritten, but those of R4 are preserved. For Load and Store instructions, transfers
between the memory and the processor are initiated by sending the address of the desired memory
location and asserting the appropriate control signals. The data are then transferred to or from the

memory. Figure 1.1 shows how the memory and the processor can be connected.

In addition to the ALU and the control circuitry, the processor contains a humber of registers used for
several different purposes. The instruction register (IR) holds the instruction that is currently being
executed. Its output is available to the control circuits, which generate the timing signals that control the

various processing elements involved in executing the instruction.

10

Main memory

Processor-memory interface

PC Ry
Control
R,
- Processor
IR
ALU
R =1

n general purpose
registers

Fig 1.1: Connection between the processor and the main memory

PC: The program counter (PC) is another specialized register. Contains the memory address of the next
instruction to be fetched and executed. During the execution of an instruction, the contents of the PC are

updated to correspond to the address of the next instruction to be executed.

General purpose Registers: There are also general-purpose registers RO through Rn—1, often called
processor registers. They serve a variety of functions, including holding operands that have been loaded

from the memory for processing.

Processor Memory Interface: The processor-memory interface is a circuit which manages the transfer
of data between the main memory and the processor. If a word is to be read from the memory, the
interface sends the address of that word to the memory along with a Read control signal. The interface
waits for the word to be retrieved, then transfers it to the appropriate processor register.If a word is to be
written into memory, the interface transfers both the address and the word to the memory along with a

Write control signal.
Following are typical operating steps:

1) A program must be in the main memory in order for it to be executed. It is often transferred there
from secondary storage
2) Execution of the program begins when the PC is set to point to the first instruction of the program.

3) The contents of the PC are transferred to the memory along with a Read control signal. When the

11

addressed word (in this case, the first instruction of the program) has been fetched from the

12

memory it is loaded into register IR. At this point, the instruction is ready to be decoded and
executed.

4) If an operand that resides in the memory is required for an instruction, it is fetched by sending its
address to the memory and initiating a Read operation. When the operand has been fetched from
the memory, it is transferred to a processor register “R”.

5) After operands have been fetched in this way, the ALU can perform a desired arithmetic
operation, such as Add, on the values in processor registers. The result is sent to a processor
register.

6) If the result is to be written into the memory with a Store instruction, it is transferred from the
processor register to the memory, along with the address of the location where the result is to be

stored, and then a Write operation is initiated.

At some point during the execution of each instruction, the contents of the PC are incremented so that the
PC points to the next instruction to be executed. Thus, as soon as the execution of the current instruction

is completed, the processor is ready to fetch a new instruction.

Normal execution of a program may be preempted if some device requires urgent service. For example, a
monitoring device in a computer-controlled industrial process may detect a dangerous condition. In order
to respond immediately, execution of the current program must be suspended. To cause this, the device
raises an interrupt signal, which is a request for service by the processor. The processor provides the
requested service by executing a program called an interrupt-service routine. When the interrupt-service
routine is completed, the state of the processor is restored from the memory so that the interrupted

program may continue.

Von Neumann Architecture:

The Von-Neumann Architecture or Von-Neumann model is also known as “Princeton Architecture”.

This architecture was published by the Mathematician John Von Neumann in 1945.

Von Neumann architecture is the design upon which many general purpose computers are based. This
architecture implemented the stored program concept in which the data and instructions are stored in the

same memory. This architecture consists of a CPU(ALU, Registers, Control Unit), Memory and 1/O unit.

13

Input
Device

=)

Central Processing Unit

Control Unit

Arithmetic / Logic Unit

Regte
e =)

I Memory Unit I

Output
Device

14

Following are the components of Von Neumann Architecture:

1. CPU(Central processing unit)
= CU(Control Unit)
= ALU(Arithmetic and logic unit)
= Registers
v PC(Program Counter)
v IR(Instruction Register)
v AC(Accumulator)
v MAR(Memory Address Register)
v MDR(Memory Data Register)
2. BUSES
3. 1/o0 Devices
4. Memory Unit

1. CPU: CPU acts as the brain of the computer and is responsible for the execution of instructions.
2. Control Unit: A control unit (CU) handles all processor control signals. It directs all input that is

used to connect computer components and transfer data between them. There are three types of BUSES

a) Data Bus: It carries data among the memory unit, the 1/O devices, and the processor.

b) Address Bus: It carries the address of data (not the actual data) between memory and
processor.

c) Control Bus: It carries control commands from the CPU (and status signals from other devices)

in order to control and coordinate all the activities within the computer.

3. 1/o Devices: Program or data is read into main memory from the input device or secondary storage
under the control of CPU input instruction. Output devices are used to output the information from a
computer. If some results are evaluated by CPU and it is stored in the computer, then with the help of

output devices, we can present them to the user.

4. Memory: A memory unit is a collection of storage cells together with associated circuits needed to
transfer information in and out of the storage. The memory stores binary information in groups of bits
called words. The internal structure of a memory unit is specified by the number of words it contains and
the number of bits in each word (2Mx N, eg: 128KB).

There are two types of Primary Memory:
15

1)RAM: VOLATILE MEMORY or temporary Memory(to store the program in execution)

2)ROM: NON-VOLATILE MEMORY or permanent Memory(to store the booting program)

a) and output flow, fetches code for instructions, and controls how data moves around the
system.

b) Arithmetic and Logic Unit (ALU) :
The arithmetic logic unit is that part of the CPU that handles all the calculations the CPU
may need, e.g. Addition, Subtraction, Comparisons. It performs Logical Operations, Bit
Shifting Operations, and Arithmetic operations.

c) Registers: A processor based on von Neumann architecture has five
special registers which it uses for processing:

Instruction set architecture of a CPU: Architecture of 8086:

MEMORY
INTERFACE

__
8IV CBus |
&
s INSTRUCTION
STREAM
4 BYTE
3 QUEUE
B-BUS 2
ES -
cs P Py Py G e S SNy W S GO0, SO S et i Cpy S g Y S
sS |
DS |
3 |
|
JI SYSTEM
€U \ A-BUS

I
1
|
|
|
I
|
|
|
1
|
-
|
1
|
CONTROL |
|
1
|
|
1
1
|
I
|
|
|
|
I
}
|
|
I
|
|
I

AH AL
BH BL
CH CL ARITHMETIC
OH DL LOGIC UNIT
SP 1]
BP | I l A
Si I ﬁ>
DI L]
[OPERANDS |
C FLAGS | 14

Fig: 8086 internal Architecture

The architecture of 8086 supports a 16-bit ALU , a set of 16-bit registers, and provides segmented
memory addressing capability, fetched instruction queue for overlapped fetching and execution.

» Architecture of 8086 is pipeline type of architecture.

» The architecture of 8086 is divided into two functional parts i.e.,
I. Execution unit (EV)
ii. Bus interface unit (BIU)

These two units work asynchronously.

16

* Functional IvVISION OT architecture speeds up the processing, since BIU and EU operate parallelly
and independently i.e., EU executes the instructions and BIU fetches another instruction from the
memory simultaneously.

* As the whole architecture is divided into two independent functional parts and both the
subsystem’s operations can be overlapped, hence the architecture is PIPELINING type of
architecture.

EXECUTION UNIT

* The execution unit informs the BIU of the processor regarding from where to fetch the
instructions from and then executes these instructions.

» The execution unit consists of the following:

= General purpose registers
= Stack pointer
= Base pointer
= |Index registers
= ALU
= Flag register(FLAGS/ PSW)
= Instruction decoder
= Timing and control unit
Functions of EU
» Tells BIU regarding from where to fetch instructions or to read data.
» Receives opcode of an instruction from the queue.
» decodes the instructions.
» Executes the instruction.
Functions of various parts of EU

» Control circuitry: Directs internal operations.

» Instruction Decoder: Translates instructions fetched from memory into series of actions.

» ALU: Performs arithmetic and logical operations.

* FLAGS: Reflects the status of program.

» General purpose reqgisters: Used to store Temporary data.

» Index and Pointer registers: Specifies/ informs about offset of operand

BUS INTERFACE UNIT

« The BIU handles transfer of data and address between the processor and memory/ 1/0 devices by
computing address (Physical/ Effective address) and send the computed address to memory / 1/0
and fetches instruction codes then stores them in FIFO register set called Queue register.

17

I ne BIU consists of the TollowIng:
% Segment Registers
¢+ Instruction pointer

% 6-Byte instruction Queue Register

Functions of BIU

Handles transfer of data and address between processor and memory / 1/O devices.
Compute physical address and send it to memory interfaces.
Fetches instruction codes and stores it in Queue

Reads/Writes data from/to memory/ 1/O devices

Functions of various parts of BIU Segment registers : Used to hold the starting address of the segmer
registers.

Queue register: Used to store pre fetched instructions and inputs it to EU.

Instruction Pointer: Used to point to the next instruction to be executed by EU.

While the EU is decoding an instruction or executing an instruction which does not require use of
the buses, the BIU fetches up to six instruction bytes that will be following the present instruction
from memory and stores them in the queue register simultaneously.

Logical and Physical Address

Addresses within a segment can range from address 00000h to address OFFFFh. This corresponds
to the 64K-bytelength of the segment. An address within a segment is called an offset or logical
address.

A logical address gives the displacement from the base address of the segment to the desired
location within it, as opposed to its "real" address, which maps directly anywhere into the 1
MByte memory space. This "real” address is called the physical address.

Difference between the physical and the logical address:
The physical address is 20 bits long and corresponds to the actual binary code output by the BIU on the

address bus lines. The logical address is an offset from location 0 of a given segment

18

Segment address —> 1005H
Offset address —> 5355H
Segment address —> 1005SH — 0001 0000 0000 0101
Shifted by 4 bit positions —> 0001 0000 0000 0101 0000
+
Offset address —> 0101 0101 0101 0101
Physical address —> 0001 0101 0101 1010 0101
1 5 5 A 5

SEGMENT DISPLACEMENT

physical address while addressing memory. The segment address value is to be taken from an appropriate
:gment register depending upon whether code, data or stack are to be accessed, while the offset may be the
mtent of [P, BX, SI, DI, SP, BP or an immediate 16-bit value, depending upon the addressing mode.

In case of 8085, once the opcode is fetched and decoded, the external bus remains free for some time
hile the processor internally executes the instruction. This time slot is utilised in 8086 to achieve the over:
pped fetch and execution cycles. While the fetched instruction is executed internally, the external bus i
sed to fetch the machine code of the next instruction and arrange it in a queue known as predecoded in
ruction byte queue. It is a 6 bytes long, first-in first-out structure. The instructions from the queue are taker
r decoding sequentially. Once a byte is decoded, the queue is rearranged by pushing it out and the queuc
atus is checked for the possibility of the next opcode fetch cycle. While the opcode is fetched by the Bu
iterface Unit (BIU), the Execution Unit (EU) executes the previously decoded instruction concurrently
he BIU along with the Execution Unit (EU) thus forms a pipeline. The bus interface unit, thus manages the
ymplete interface of execution unit with memory and I/O devices, of course, under the control of the timing
1d control unit.

The execution unit contains the register set of 8086 except segment registers and IP. It has a 16-bit ALU,
able to perform arithmetic and logic operations. The 16-bit flag register reflects the results of execution by
the ALU. The decoding unit decodes the opcode bytes issued from the instruction byte queue. The timing and
control unit derives the necessary control signals to execute the instruction opcode received from the queue,
depending upon the information made available by the decoding circuit. The execution unit may pass the
results to the bus interface unit for storing them in memory.

Flag reqgister of 8086

Dis Dy Diz D1z Dnn Dic Ds Ds D Ds Ds Ds D3 D D Do
Ol DI I TS | Z AC P CY

There are total 9 flags in 8086 and the flag register is divided into two types:

(a) Status Flags — There are 6 flags in 8086 microprocessor which become set(1) or reset(0)
depending upon condition after either 8-bit or 16-bit operation. These flags are
conditional/status flags.

The 6 status flags are:

(b) Sign Flag (S): This flag is set when the result of any computation is negative.

(c) Zero Flag (2):This flag is set when the result of any computation or comparison performed is
zero.

(d) Auxiliary Cary Flag (AC): This flag is set when there is acarry from the lower nibble.

(e) Parity Flag (P): This flag is set when the lower byte of the result contains even number of 1’s .

(f) Overflow Flag:This flag will be set (1) if the result of a signed operation is too large to fit in the
number of bits available to represent it, otherwise reset (0).(eg:50+32= 82)

(9) Carry Flag (CY)): This flag is set when there is a carry out of the MSB in case of addition or a
borrow in case of subtraction.

Control Flags — The control flags enable or disable certain operations of the microprocessor.There are 3
control flags in 8086 microprocessor and these are:

Directional Flag (D) — This flag is specifically used by string manipulation instructions string
instructions. If this flag is 0,the string is processed beginning from the lowest address to the highest
address. If this flag is 1,the string is processed beginning from the highest address to the lowest address.

Interrupt Flag:If interrupt flag is set (1), the microprocessor will recognize interrupt requests from the
peripherals.

If interrupt flag is reset (0), the microprocessor will not recognize any interrupt requests and will ignore
them.

Trap Flag (T) —Setting trap flag puts the microprocessor into single step mode for debugging.

20

INSTRUCTION SET ARCHITECTURE OF CPU

Regqister Transfer Lanquage:

e A digital computer system exhibits an interconnection of digital modules such as registers,
decoders, arithmetic elements, and Control logic. These digital modules are interconnected with
some common data and control paths to form a complete digital system. Digital modules are best
defined by the registers and the operations that are performed on the data stored in them.

e The operations performed on the data stored in registers are called Micro-operations. A
microoperation is an elementary operation performed on the information stored in oneor more
registers. The result of the operation may replace the previous binary information of a register or
may be transferred to another register. Examplesof microoperations are shift, count, clear, and
load.

e The Register Transfer Language is the symbolic representation of notations used to specify
the sequence of micro-operations.

In a computer system, data transfer takes place between processor registers and memory and
between processor registers and input-output systems. These data transfer can be represented by
standard notations given below:

o Notations R0, R1, R2..., and so on represent processor registers.
o The addresses of memory locations are represented by names such as LOC, PLACE, MEM, etc.
o Input-output registers are represented by names such as DATA IN, DATA OUT and so on.

o The content of register or memory location is denoted by placing square brackets around the name
of the register or memory location.

Register Transfer:

Computer registers are denoted by capital letters (sometimes followed by numerals) to denote the
function of the register. The register that holds an address for the memory unit is usually called a memory
address register and is denoted by MAR. Other registers are PC (for program counter), IR (for
instruction register, and R1 (for processor register). An n-bit register is sequence of n-flipflops numbered
from O through n-1, starting from O in the rightmost position and increasing the numbers toward the left.

The most common way to represent a register is by a rectangular box with the name of the register inside,
as shown in the figure below. The individual bits can be distinguished as shown in (b). The numbering of
bits in a 16-bit register can be marked on top of the box as shown in (c). A16-bit register is partitioned
into two parts in (d). Bits 0 through 7 are assigned the symbol L (for low byte) and bits 8 through 15 are
assigned the symbol H(for high byte). The name of the 16-bit register is PC. The symbol PC (0-7) or PC
(L) refers to the low-order byte and PC(8-15) or PC(H) to the high-order byte.

21

Rl 7T 635 4 3 2 10

(a) Register R (b) Showing individual bits
15 0 15 8 7 0
R2 PC (H) PE(L)
(c) Numbering of bits (d) Divided into two parts

Fig: Block diagram of registers

Information transfer from one register to another is designated in symbolic form by means of a
replacement operator as shown below, which denotes a transfer of the contents of register R1 into register
R2.Contents of R2 are replaced by the contents of R1.By definition, the content of the source register R1
does not change after the transfer. Register transfer implies that circuits are available from the outputs of
the source register to the inputs of the destination register.

R2 <--R1

Sometimes, we may want the transfer to occur only under a predetermined control condition. This can be
shown by means of an if-then statement

If (P =1) then (R2 <--R1)

where P is a control signal generated in the control section. A control function is a Boolean variable that
is equal to 1 or 0. The control function is included in the statement as follows

P: R2 <--R1

The control condition is terminated with a colon. It symbolizes the requirement that the transfer operation
be executed by the hardware only if P = 1.

Every statement written in a register transfer notation implies a hardware construction for implementing
the transfer. Figure below shows the block diagram that depicts the transfer from R1 to R2. The n outputs
of register R1 are connected to the n inputs of register R2. The letter n will be used to indicate any
number of bits for the register. It will be replaced by an actual number when the length of the register is
known. Register R2 has a load input that inactivated by the control variable P. It is assumed that the
control variable is synchronized with the same clock as the one applied to the register.

Control p Loa'd
circuit R2 9

Clock

Rl

22

In the timing diagram below, P is activated in the control section by the rising edgeof a clock pulse at
time t . The next positive transition of the clock at time t + 1finds the load input active and the data inputs
of R2 are then loaded into theregister in parallel. P may go back to O at time t + 1; otherwise, the
transferwill occur with every clock pulse transition while P remains active.

Note:Even though the control condition such as P becomes active just after time t,the actual transfer does
not occur until the register is triggered by the nextpositive transition of the clock at timet + 1.

LI

Transfer occurs here J

Registers are denoted by capital letters, and numerals may follow the letters. Parentheses are used to
denote a part of a register by specifying the range of bits or by giving a symbol name to a portion of a
register. The arrow denotes a transfer of information and the direction of transfer. A comma is used to
separate two or more operations that are executed at the same time.

Fig: Timing Diagram

The statement
T: R2<-R1,R1<-R2

It denotes an operation that exchanges the contents of two registers during one common clock pulse
provided that T = 1.

The basic symbols of the register transfer notation are given below:

Symbol Description Examples
Letters Denotes a register MAR, R2
(and numerals)
Parentheses () Denotes a part of a register R2(0-7), R2(L)
Arrow « Denotes transfer of information R2 « R1
Comma , Separates two microoperations ~ R2 « R1, R1 « R2

Fig: Basic symbols of register Transfer

Memory Transfer:

The transfer of information from a memory word to the outside environment is called a read operation.
The transfer of new information to be stored into the memory is called a write operation. A memory word
will be symbolized by the letter M.

The particular memory word among the many available is selected by the memory address during the
transfer. It is necessary to specify the address of when writing memory transfer operations. This will be

done by enclosing the address in square brackets following the letter M.
23

Memory Read: Consider a memory unit that receives the address from a register, called the address
register, symbolized by AR. The data are transferred to another register, called the data register,
symbolized by DR. The read operation can be stated as follows:

Read: DR <- M [AR]
This causes a transfer of information into DR from the memory word M selected by the address in AR.

Memory Write: The write operation transfers the content of a data register to a memory word M selected
by the address. Assume that the input data is in register R1 and the address in AR. The write operation
can be stated symbolically as follows:

Write: M[AR] € R1
This causes the transfer of information from R1 into the memory word M selected by the address in AR.

Instruction cycle:

In the basic computer each instruction cycle consists of the following phases:

1. Fetch an instruction from memory.

2. Decode the instruction.

3. Read the effective address from memory if the instruction has an indirect address.
4. Execute the instruction.

Upon the completion of step 4, the control goes back to step 1 to fetch, decode, and execute the next
instruction. This process continues indefinitely unless a HALT instruction is encountered.

FETCH AND DECODE: Initially, the program counter PC is loaded with the address of the first
instruction in the program. The sequence counter SC is cleared to 0, providing a decoded timing signal
To. After each clock pulse, SC is incremented by one, so that the timing signals go through a sequence
TO, T1, T2, and so on.

The Micro-operations for the fetch and decode phases can be specified by the following register transfer
statements:

To: AR & PC
The address from PC to AR during the clock transition associated with timing signal TO.
T1: IR €M[AR],PC <PC +1

The instruction read from memory is then placed in the instruction register IR with the clock transition
associated with timing signal T1. At the same time, PC is incremented by one to prepare it for the address
of the next instruction in the program

T,: DO, ..., D7 € Decode IR(12-14),AR € IR(0-11), 1< IR(I5)

At time T2, the operation code in IR is decoded, the indirect bit is transferred to flip-flop I, and the
address part of the instruction is transferred to AR.

Decoding: The timing signal that is active after the decoding is T3. During time T3, the control unit
determines the type of instruction that was just read from memory. Decoder output D7, is equal to 1 if the
operation code is equal to binary 111. If D7 = 1, the instruction must be a register-reference or input-
output type. If D7 = 0, the operation code must be one of the other seven values 000 through
110,specifying a memory-reference instruction. Control then inspects the value of the first bit of the

24

Instruction, wnicn IS now avallapble In Thp-Tilop 1. IT D/ = U ana I = 1, we nhave a

25

Memory reference instruction with an indirect address. The micro operation for the indirect address
condition can be symbolized by the register transfer statement:

AR € M [AR]

D;IT5. AR < M[AR]
D; I'T;: Nothing
D,;I'T5: Execute a register-reference instruction
D,ITy: Execute an input-output instruction

When a memory-reference instruction with | = 0 is encountered, it is not necessary to do anything since
the effective address is already in AR. However, the sequence counter SC must be incremented so that the
execution of the memory-reference instruction can be continued with timing variable T4.After the
instruction is executed ,SC is cleared to 0 and control returns to the fetch phase with TO=1.

Register-reference instructions are recognized by the control when 07 = 1 and i= 0.The 12 bits available
in IR(0-11) are transferred to AR during time T2.These instructions are executed with the clock transition
associated with timing variable T3.The execution of a register-reference instruction is completed at time
T3.The sequence counter SC is cleared to 0 and the control goes back to fetch the next instruction with
timing signal TO.

Start
SC«0
A Tﬂ
AR « PC
r TI
IR «— M [AR], PC« PC + |
i T,
Decode operation code in /R (12— 14)
AR «IR(0-11), I « IR (15)
i
(Register or 1/0) =1 =0 (Memory-reference)
10y =1 =0 (register) (indirect) =1 /L= 0 (direct)
<> <O
T3 i T3 [T; T,
Execute _ Execute AR « M[AR] Nothing
input-output register-reference
instruction instruction

SC«0 SC«0 1

Execute
memory-reference
instruction

SC«0

26

F1g:Flowchart Tor Instruction cycle

27

Addressing Modes
ADDRESSING MODES OF 8086:

Addressing modes is the manner in which operands are given in an instruction. The addressing modes of
8086 are as follows:

1) IMMEDIATE ADDRESSING MODE: In this mode the operand is specified in the
instruction itself. Instructions are longer but the operands are easily identified.
E.g.: MOV CL, 12H ; Moves 12 immediately into CL register
MOV BX, 1234H ; Moves 1234 immediately into BX register
2) REGISTER ADDRESSING MODE: In this mode operands are specified using
registers. Instructions are shorter but operands cant be identified by looking at the
instruction.
E.g.: MOV AX,BX
ADD BX,CX
3) DIRECT ADDRESSING MODE: In this mode address of the operand is directly specified in the
instruction.
Eg:MOV CL, [2000H] ; CL Register gets data from memory location 2000H
CL <[2000H]
MOV [3000H], DL ; Memory location 3000H gets data from DL Register
[3000H] < DL
4) INDIRECT ADDRESSING MODE: In Indirect Addressing modes, address is given by a
register. The register can be incremented in a loop to access a series of locations. There are
various sub-types of Indirect addressing mode.
REGISTER INDIRECT ADDRESSING MODE
This is the most basic form of indirect addressing mode. Here address is simply given by a register.
E.g.: MOV CL, [BX] ; CL gets data from a memory location pointed by BX
CL < [BX]. If BX = 2000H, CL < [2000H]
E.g.: MOV [BX], CL ; CL is stored at a memory location pointed by BX
[BX] €<CL. If BX = 2000H, [2000H] < CL.

REGISTER RELATIVE ADDRESSING MODE :Here address is given by a register plus a numeric
displacement.

E.g.: MOV CL, [BX + 03H] ; CL gets data from a location BX + 03H
CL € [BX+03H]. If BX = 2000H, then CL € [2003H]

E.g.: MOV [BX + 03H], CL ; CL is stored at location BX + 03H
[BX+03H] <CL. If BX = 2000H, then [2003H] < CL.

BASE INDEXED ADDRESSING MODE Here address is given by a sum of two registers. This is
typically useful in accessing an array or a look up table. One register acts as the base of the array holding
its starting address and the other acts as an index indicating the element to be accessed.

E.g.: MOV CL, [BX + SI] ; CL gets data from a location BX + Sl ; CL < [BX+SI]. ;

If BX = 2000H, SI = 1000H, then CL ¢ [3000H] E.g.: MOV [BX + SI], CL ; CL is stored at location BX A
Sl ; [BX+SI] € CL. ; If BX = 2000H, SI = 1000H, then [3000H] < CL.

BASE RELATIVE PLUS INDEX ADDRESSING MODE Here address is given by a sum of base
register plus index register plus a numeric displacement.

28

E.9.. MOV CL, |BX+S1+U3H] ; CL gets data Trom a location BX + 51 + U3H
CL <[BX+SI+03H]. ;

29

If BX = 2000H, SI = 1000H, then CL < [3003H]

E.g.: MOV [BX+SI+03H], CL ; CL is stored at location BX + SI + 03H ;
[BX+SI1+03H] <CL. ;

If BX = 2000H, SI = 1000H, then [3003H] < CL.

IMPLIED ADDRESSING MODE: In this addressing mode, the operand is not specified at all, as it is
an implied operand. Some instructions operate only on a particular register. In such cases, specifying the
register becomes unnecessary as it becomes implied.

E.g.: STC; Sets the Carry flag.; This instruction can only operate on the Carry Flag.
E.g.: CMC ; Complements the Carry flag.; This instruction can only operate on the Carry Flag

Instruction Set:

Most computer instructions can be classified into three categories:
1. Data transfer instructions
2. Data manipulation instructions
3. Program control instructions

1) Data Transfer Instructions: Data transfer instructions move data from one place in the computer to
another without changing the data content. The most common transfers are between memory and
processor registers, between processor registers and input or output, and between the processor registers
themselves. Table below gives a list of eight data transfer instructions used in many computers.

Name Mnemonic
Load LD
Store 5T
Move MOV
Exchange XCH
Input IN
Output ouT
Push PUSH
Pop POP

Accompanying each instruction is a mnemonic symbol. Different computers use different mnemonics for
the same instruction name.

The load instruction has been used mostly to designate a transfer from memory to a processor register,
usually an accumulator. The store instruction designates a transfer from a processor register into
memory. The move instruction has been used in computers with multiple CPU registers to designate a
transfer from one register to another. It has also been used for data transfers between CPU registers and
memory or between two memory words. The exchange instruction swaps information between two
registers or a register and a memory word. The input and output instructions transfer data among
processor registers and input or output terminals. The push and pop instructions transfer data between
processor registers and a memory stack.

2) Data Manipulation Instructions: The data manipulation instructions in a typical computer are usually
divided into three basic types:

v" Arithmetic instructions
30

v Logical and bit manipulation Instructions

31

v" Shift instructions

Arithmetic instructions: The four basic arithmetic operations are addition, subtraction,
multiplication, and division. Most computers provide instructions for all four operations. Some
small computers have only addition and possibly subtraction instructions.

A list of typical arithmetic instructions is given in Table given below:

Name Mnemonic
Increment INC
Decrement DEC
Add ADD
Subtract SUB
Multiply MUL
Divide DIV
Add with carry ADDC
Subtract with borrow SUBB

MNegate (2's complement) NEG

The increment instruction adds 1 to the value stored in a register or memory word. The decrement
instruction subtracts 1 from a value stored in a register or memory word. The add, subtract, multiply, and
divide instructions may be available for different types of data. The data type assumed -to be in processor
registers during the execution of these arithmetic operations is included in the definition of the operation
code. An arithmetic instruction may specify fixed-point or floating-point data, binary or decimal data,
single-precision or double-precision data.

The mnemonics for three add instructions that specify different data types are shown below:
ADDI Add two binary integer numbers

ADDF Add two floating-point numbers

ADDD Add two decimal numbers in BCD

The instruction "add with carry"” performs the addition on two operands plus the value of the carry from
the previous computation. Similarly, the "subtract with borrow" instruction subtracts two words and a
borrow which may have resulted from a previous subtract operation. The negate instruction forms the 2'
s complement of number, effectively reversing the sign of an integer when represented in the signed- 2's
complement form.

Logical and Bit Manipulation Instructions: Logical instructions perform binary operations on
strings of bits stored in registers. They are useful for manipulating individual bits or a group of bits that
represent binary-coded information. The logical instructions consider each bit of the operand
separately and treat it as a Boolean variable. By proper application of the logical instructions, it is
possible to change bit values, to clear a group of bits, or to insert new bit values into operands stored in
registers or memory words.

Some logical and bit manipulation instructions are shown in the figure below:

32

Name Mnemonic

Clear CLR
Complement COM
AND AND
OR OR
Exclusive-OR XOR
Clear carry CLRC
Set carry SETC
Complement carry COMC
Enable interrupt EI
Disable interrupt DI

The clear instruction causes the specified operand to be replaced by D's.The complement instruction
produces the 1's complement by inverting all the bits of the operand. The AND, OR, and XOR
instructions produce the corresponding logical operations on individual bits of the operands. Although
they perform Boolean operations, when used in computer instructions, the logical instructions should be
considered as performing bit manipulation operations. There are three-bit manipulation operations
possible: a selected bit can be cleared to 0, or can be set to 1, or can be complemented. The three logical
instructions are usually applied to do just that.

Shift Instructions: Shifts are operations in which the bits of a word are moved to the left or right. Shift
instructions may specify logical shifts, arithmetic shifts, or rotate-type operations. In either case the shift
maybe to the right or to the left. Table below lists four types of shift instructions:

Name Mnemonic
Logical shift right SHR
Logical shift left SHL
Arithmetic shift right SHRA
Arithmetic shift left SHLA
Rotate right ROR
Rotate left ROL

Rotate right through carry RORC
Rotate left through carry ROLC

The logical shift inserts Oto the end bit position. The end position is the leftmost bit for shift right and the
rightmost bit position for the shift left.

The arithmetic shift-right instruction must preserve the sign bit in the leftmost position. The sign bit is
shifted to the right together with the rest of the number, but the sign bit itself remains unchanged. This is
a shift-right operation with the end bit remaining the same. The arithmetic shift-left instruction inserts 0
to the end position and is identical to the logical shift-left instruction.

The rotate instructions produce a circular shift. Bits shifted out at one end of the word are not lost as in a
logical shift but are circulated back into the other end. The rotate through carry instruction treats a carry
bit as an extension of the register whose word is being rotated. Thus, a rotate-left through carry
instruction transfers the carry bit into the rightmost bit position of the register, transfers the leftmost bit
position into the carry, and at the same time, shifts the entire register to the left.

33

Program Control Instructions: Program control instructions provide decision-making capabilities and
change the path taken by the program when executed in the computer a program control type of
instruction, when executed, may change the address value in the program counter and cause the flow of
control to be altered. In other words, program control instructions specify conditions for altering the
content of the program counter.

Some program control instructions are listed in Table below:

Name Mnemonic
Branch BR
Jump JMP
Skip SKP
Call CALL
Return RET
Compare (by subtraction) CMP
Test (by ANDing) TST

Branch and jump instructions are used interchangeably to mean the same thing, but sometimes they are
used to denote different addressing modes. Branch instruction is written as BR ADR, where ADR is a
symbolic name for an address. Branch and jump instructions may be conditional or unconditional. An
unconditional branch instruction causes a branch to the specified address without any conditions. The
conditional branch instruction specifies a condition such as branch if positive or branch if zero. If the
condition is met, the program counter is loaded with the branch address and the next instruction is taken.
from this address. If the condition is not met, the program counter is not changed and the next instruction
is taken from the next location in sequence.

The skip instruction does not need an address field and is therefore a zero-address instruction. A
conditional skip instruction will skip the next instruction if the condition is met. If the condition is not
met, control proceeds with the next instruction in sequence.

The call and return instructions are used in conjunction with subroutines.

The compare instruction performs a subtraction between two operands, but the result of the operation is
not retained. However, certain status bit conditions are set as a result of the operation. Similarly, the test
instruction performs the logical AND of two operands and updates certain status bits without retaining
the result or changing the operands. (Note: The compare and test instructions do not change the program
sequence directly. They are listed in Table because of their application in setting conditions for
subsequent conditional branch instructions)

34

Program counter (PC) holds the memory address of the next instruction to be
fetched from primary storage.

The Memory Address Register (MAR) holds the address of the current
instruction that is to be fetched from memory, or the address in memory to which
data is to be transferred.

The Memory Data Register (MDR) holds the contents found at the address held
in MAR or data which is to be transferred to the primary storage.

The Current Instruction Register (CIR) holds the instruction that is currently
being decoded and executed.

The Accumulator is a special purpose Register and is used by the ALU to hold

the data being processed and the results of calculations.

36

MODULE-2

NUMBER REPRESENTATION:

NUMBERS
Integers FLOATING POINT
NUMBERS
UNSIGNED
NUMBERS
_.l. (ONLY POSITIVE)
REAL WORLD INSIDE COMPUTER SYSTEM /
STORED IN BINARY SIGNED NUMBERS
(DECIMAL SYSTEM)
(HEX FORMAT) (BOTH POSTIVE AND
NEGATIVE

UNSIGNED INTEGERS

These are binary numbers that are always assumed to be positive. Here all available bits of the number are
used to represent the magnitude of the number. No bits are used to indicate its sign, hence they are called
unsigned numbers.

E.g.: Roll Numbers, Memory addresses etc

SIGNED INTEGERS

These are binary numbers that can be either positive or negative. The MSB of the number indicates
whether it is positive or negative. If MSB is 0 then the number is Positive. If MSB is 1 then the

number is Negative. Negative numbers are always stored in 2’s complement form.
Three systems are used for representing such numbers:

* Signed magnitude

* 1’s-complement

* 2°s-complement
37

In all three systems, the leftmost bit is O for positive numbers and 1 for negative numbers.Positive values
have identical representations in all systems, but negative values have different representations.

38

In the signed magnitude system, negative values are represented by changing the most significant bit

from 0 to 1.For example, +5 is represented by 0101, and —5 is represented by 1101.

In 1’s-complement representation, negative values are obtained by complementing each bit of the
corresponding positive number. Thus, the representation for —3 is obtained by complementing each bit in
the vector 0011 to yield 1100.The same operation, bit complementing, is done to convert a negative

number to the corresponding positive value.

B Walues represented
Sign and
by b,b,b, magnitude 1’s complement 2's complement
0oO1 11 + 7 + 7 + 7
0110 +6 +6 +6
0101 +5 + 5 + 5
0100 +4 +4 +4
0011 + 3 + 3 +3
0010 +2 + 2 +2
0001 + 1 + 1 + 1
0000 +0 + 0 +0
1000 -0 -7 — 8
1 001 —1 —6 -7
1010 -2 -5 —6
1011 -3 —4 -5
1100 — 4 3 4
1101 -5 -2 —3
1110 —6 —1 -2
1111 —7 -0 —1

Fig: Binary signed number Representations

Two’s complement gives a unique representation for zero. Any other system gives a separate
representation for +0 and for -0. This is absurd. In two’s complement system, -(x) is stored as two’s
complement of (x). Applying the same rule for 0, -(0) should be stored as two’s complement of 0. 0 is
stored as 000. So —(0) should be stored as two’s complement of 000, which again is 000. Hence two’s
complement gives a unique representation for 0.1t produces an additional number on the negative
side. As two’s complement system produces a unique combination for 0, it has a spare combination

‘1000’ in the above case, and can be used to represent —(8).

39

3 B1T INTEGER
23 = 8 therefore 8 combinations
Unsigned Signed
3 [il e LT o S

4 B1T INTEGER
2% = 16 therefore 16 combinations
Unsigned Signed
0 ..15 -8..-101..7

Fixed and Floating point Representations:
There are two major approaches to store real numbers (i.e., numbers with fractional component) in modern
computing. These are
(1) Fixed Point Notation and
(i) Floating Point Notation.
Fixed Point Notation: In fixed point notation, there are a fixed number of digits after the decimal point,

whereas floating point number allows for a varying number of digits after the decimal point.

This representation has fixed number of bits for integer part and for fractional part. For example, if given
fixed-point representation is I11.FFFF, then you can store minimum value is 0000.0001 and maximum
value is 9999.9999. There are three parts of a fixed-point number representation: the sign field, integer

field, and fractional field.

Unsigned fixed point Integer | Fraction

Signed fixed point Sign| Integer | Fraction

Assume number is using 32-bit format which reserve 1 bit for the sign, 15 bits for the integer part and 16

bits for the fractional part. Then, -43.625 is represented as following:

1 | 000000000101011 | 1010000000000000

Sign Integer part Fractional part
bit

Where, 0 is used to represent + and 1 is used to represent -. 000000000101011 is 15-bit binary value for

decimal 43 and 1010000000000000 is 16-bit binary value for fractional 0.625.
40

The advantage of using a fixed-point representation is performance and disadvantage is relatively limited
range of values that they can represent. So, it is usually inadequate for numerical analysis as it does not
allow enough numbers and accuracy. A number whose representation exceeds 32 bits would have to be
stored inexactly.

Floating Point Representation:

In some numbers, which have a fractional part, the position of the decimal point is not fixed as the
number of bits before (or after) the decimal point may vary. E.g.: 0010.01001, 0.0001101, -1001001.01
etc. the position of the decimal point is not fixed, instead it “floats' in the number. Such numbers are
called Floating Point Numbers. Floating Point Numbers are stored in a "Normalized™ form.
NORMALIZATION OF A FLOATING POINTNUMBER:

Normalization is the process of shifting the point, left or right, so that there is only one non-zero digit to
the left of the point.

01010.01 (-1)0 x 1.01001 x 23

11111.01 (-1)0 x 1.111101 x 2*

-10.01 (-1)1 x 1.001 x 2*
A normalized form of a number is:
-1 x1.MX2E
Where: S = Sign, M = Mantissa and E = Exponent.

As Normalized numbers are of the 1.M format, the "1" is not actually stored, it is instead assumed. Also
the Exponent is stored in the biased form by adding an appropriate bias value to it so that -ve exponents
can be easily represented.

Advantages of Normalization.

1. Storing all numbers in a standard for makes calculations easier and faster.

2. By not storing the 1 (of 1.M format) for a number, considerable storage space is saved.

3. The exponent is biased so there is no need for storing its sign bit (as the biased exponent cannot be -
ve).

SHORT REAL FORMAT /SINGLE PRECISION FORMAT / IEEE 754: 32 BIT FORMAT:

S Biased Exponent Mantissa

(1) (8) (23 bits)
Bias value = 127

41

32 bits are used to store the number.

23 bits are used for the Mantissa.

8 bits are used for the Biased Exponent.
1 bit used for the Sign of the number.
The Bias value is (127)10.

Range:il x-10-3-8 to +3 x 1038

o > W N oE

LONG REAL FORMAT / DOUBLE PRECISION FORMAT / IEEE 754: 64 BIT FORMAT

64 bits are used to store the number.

=

52 bits are used for the Mantissa.

11 bits are used for the Biased Exponent.

1 bit used for the Sign of the number.

The Bias value is (1023)1o.

6. The range is +10-3% to +103%approximately.

SN El S

S Biased Exponent Mantissa
1 bit 11-bits (Bias value:1023) 52-bits

Extreme cases of floating point numbers:

Floating point numbers are represented in IEEE formats. Consider IEEE 754 32-bit format also
called Single Precision format or Short real format.

Overflow:

For a value, 1.0 the normalized form will be

(-1)°x1.0x2°

Here the True Exponent is 0.

If: TE = 0, BE = 127 Representation = 0111 1111
If: TE =1, BE = 128 Representation = 1000 0000
If: TE = 2, BE = 129 Representation = 1000 0000
If: TE = 127, BE = 254 Representation = 1111 1110
If: TE = 128, BE = 255 Representation = 1111 1111
If: TE = 129, BE = 255 Representation = 1111 1111
If: TE = 130, BE = 255 Representation = 1111 1111

This is because the 8-bit biased exponent cannot hold a value more than 255.Hence, all cases where the

TE = 128 or more, the BE will be represented as 1111 1111.This indicates as exception (error) called

42

OVERFLOW. The number is called NaN (Not a Number).It is identified by Exponent being all 1s (1111

43

1111).Here, the Mantissa can be anything! The Extreme case of NaN is Infinity. It is also an
OVERFLOW and hence the Exponent will be 1111 1111.To differentiate Infinity from NaN, the
Mantissa in infinity is 0000 0000.Hence Infinity is identified as Exponent all 1s and Mantissa all Os.
Suppose the number is 0.1.1t will be normalized as

(-1)°x1.0x 2%
The true exponent here is -1.

If: TE = -1, BE = 126 Representation = 0111 1110
If: TE = -2, BE = 125 Representation = 0111 1101
If: TE = -126, BE =1 Representation = 0000 0001
If: TE = -127, BE = 0 Representation = 0000 0000
If: TE = -128, BE = 0 Representation = 0000 0000
If: TE = =129, BE = 0 Representation = 0000 0000

Underflow: All cases where the TE =-127 or less, the BE will be represented as 0000 0000.This
indicates as exception (error) called UNDERFLOW.

The number is called De-Normal Number. It is identified by Exponent being all Os (0000
0000).Here, the Mantissa can be anything. The Extreme case of De-Normal Number is Zero.

It is also an UNDERFLOW and hence the Exponent will be 0000 0000.To differentiate Zero from
De-Normal Number, the Mantissa in Zero is 0000 0000.Hence Zero is identified as Exponent all
0s and Mantissa all 0s.This means Zero is represented as all 0s.

Example: Convert 2A3BH into Short Real format.

Soln: Converting the number into binary we get:
0010 1010 0011 1011

Normalizing the number we get:

(-1)°x 1.0101000111011 x 2%

Here S = 0; M = 0101000111011, True Exponent = 13.
Bias value for Short Real format is 127:

Biased Exponent (BE) = True Exponent + Bias

=13 +127

= 140.

Converting the Biased exponent into binary we get:
Biased Exponent (BE) = (1000 1100)

Representing in the required format we get:

44

0 10001100 010100011101100...

S Biased Exp Mantissa
(1) (8) (23)
Computer Arithmetic

Integer Addition:

Addition of Unsigned Integers: Addition of 1-bit numbers is illustrated below. The sum of 1 and
1 is the 2-bit vector 10, which represents the value 2. We say that the sum is 0 and the carry-out is
1. In order to add multiple-bit numbers, We add bit pairs starting from the low-order (right)

end of the bit vectors, propagating carries toward the high-order (left) end. The carry-out from a
bit pair becomes the carry-in to the next bit pair to the left. The carry-in must be added to a bit pair
in generating the sum and carry-out at that position. For example, if both bits of a pair are 1 and
the carry-in is 1, then the sum is 1 and the carry-out is 1, which represents the value 3.

0 | 0 1
+ 0 + 0 + 1 + 1
0 | 1 10

Carry-out

Fig: Addition of 1-bit Numbers
Addition and Subtraction of Signed Integers:
To add two numbers, add their n-bit representations, ignoring the carry-out bit fromthe most
significant bit (MSB) position. The sum will be the algebraically correct value in2’s-complement
representation if the actual result is in the range—(2" ') through+2"'— 1.
To subtract two numbers X and Y, that is, to perform X —Y , form the 2’s-complement of Y , then
add it to X using the add rule. Again, the result will be the algebraically correct value in 2’s-
complement representation if the actual result is in the range —(2"') through+2"",

X-Y = X+(-Y) = X+(2’S Complement of Y)

Example: To perform 7-3 using 2’s complement addition

45

—>

Carry-out

If we ignore the carry-out from the fourth bit position in this addition, we obtain the correct answer.

Few more examples:

(a) 0010 (+2) (b) 0100 (+4)
+0011 (+3) + 1010 (—6)
0101 (+5) 1110 (-2)
(©) 1011 (=5) (d) 0111 (+7)
+1110 (-2) + 1101 (=3)
1001 (-7) 0100 (+4)
(e) 1101 (=3) 1101
~ 1001 (-7) :> +0111
0100 (+4)

Sign Extension: We often need to represent a value given in a certain number of bits by using a larger
number of bits. For a positive number, this is achieved by adding Os to the left. For a negative number in
2’s-complement representation, the leftmost bit, which indicates the sign of the number, is a 1. A longer
number with the same value is obtained by replicating the sign bit to the left as many times as needed.
Overflow in Integer Arithmetic: Using 2’s-complement representation, n bits can represent values in the
range —(2"') through+2"!.For example, the range of numbers that can be represented by 4 bits is
—8through +7.When the actual result of an arithmetic operation is outside the represent able range, an
arithmetic overflow has occurred.

Introduction to adder circuits:

ONE BIT ADDITION: FULL ADDER

1) It is a 1-bit adder circuit.

2) It adds two 1-bit inputs Xi & Yi, along with a Carry Input Cin.

3) It produces a sum Zi and a Carry output Cout.

4) As it considers a carry input, it can be used in combination to add large numbers.
5) Hence it is called a Full Adder.

46

(Two 1-bit inputs)

Xi Yi
1-BIT
Cout ¢ FuLL 4— Cin
(Output: Carry) ADDER (Carry input)
Zi

(Output: Sum)
Inputs bits: Xi and Yi.
Input Carry: Cin

Output (Sum): Zi
Output (Carry): Cout

Formula for Sum (Zi)

Zi=Xi®Yi® Cin
. Zi=Xi"Yi-Cin+ Xi*Yi-Cin+Xi*Yi-Cin+Xi-Yi-Cin

Formula for Carry (Cout)

Cout=Xi"Yi+Xi-Cin+Yi-Cin

47

Xi
Yi
Cin

Xi
Yi
Cin

Xi (Sum)

F —

Cin

X1
Yi
Cin

)
sy
D_
)

Fig: Circuit for Sum

Yi —]

Xl —
Cout

D=
—~ L=
D=

ClN —

Fig: Circuit for carry
RIPPLE CARRY ADDER(For Multiple bit addition):
1) A Full Adder can add two “1-bit” numbers with a Carry input.
2) It produces a “1-bit” Sum and a Carry output.
3) Combining many of these Full Adders, we can add multiple bits.
4) One such method is called Serial Adder.
5) Here, bits are added one-by-one from Least significant bit(LSB) onwards.
6) The carries are connected in a chain through the full adders. The Carry of each stage is propagated
(Rippled) into the next stage.
7) Hence, these adders are also called Ripple Carry Adders.
Advantage: They are very easy to construct.
Drawback: As addition happens bit-by-bit, they are slow.

8) Number of cycles needed for the addition is equal to the number of bits to be added.

48

Inputs:

49

Assume X and Y are two “4-bit” numbers to be added, along with a Carry input CIN.
X =X0 X1 X2 X3 (X0 isthe MSB ... X3 is the LSB)

Y=Y0OY1Y2Y3(YOisthe MSB ... Y3isthe LSB)

CIN = Carry Input

Outputs:

Assume Z to be a “4-bit” output, and COUT to be the output Carry
Z=27027127273(Z0isthe MSB ... Z3 is the LSB)(Here Z represents the sum)

COUT = Carry Output

Xo Yo X1 Y1 x2 YZ x3 Y3
1-BrIr 1-BiIr 1-BIr 1-Brr
— FuLL — FuLL L Bm— FuLL \ Em— FuLL —
Cour | AbpDER C, ADDER C, ADDER C; ADDER Cin
Zo Zy Z, Z;

Fig:4-bit Ripple Carry Adder

Carry Look ahead Adder(For multiple bit Addition):

1) This is also called as parallel adder. It is used to add multiple bits simultaneously.

2) While adding multiple bits, the main issue is that of the intermediate carries.

3) In Serial Adders, we therefore added the bits one-by-one.

4) This allowed the carry at any stage to propagate to the next stage.

5) But this also made the process very slow.

6) If we “PREDICT” the intermediate carries, then all bits can be added simultaneously.
7) This is done by the Carry Look Ahead Generator Circuit.

8) Once all carries are determined beforehand, then all bits can be added simultaneously.
Advantage: This makes the addition process extremely fast.

Drawback: Circuit is complex.

Inputs:

Assume X and Y are two “4-bit” numbers to be added, along with a Carry input CIN.

50

X =X0 X1 X2 X3 (X0 isthe MSB ... X3isthe LSB); Y =Y0 Y1 Y2 Y3 & CIN=Carry Input

51

Outputs:
Assume Z to be a “4-bit” output, and Cour to be the output Carry
Z=27021272 73 & Court = Carry Output

Cin
CARRY LOOK AHEAD GENERATOR n
FF N e Rt Rl
COUT cl c2 C3
Xo Yo X1 Y; x2 Yz x3 Y3
- L — -
1-Bir 1-Birr 1-B1r 1-Bir
Cour ¢/ |Go FuLL < |G1 Fui. (¢ |Gz FuLL ¢! |Gs FuLL ——
ADDER ~ | ADDER ADDER ADDER Cin
Po l = l P2 l Ps l
Zo Zy z; Z3

Fig: Circuit for Carry Look ahead Adder

We can “Predict” (Look Ahead) all the intermediate carries in the following

manner: The carry at any stage can be calculated as:

Ci
Ci

Xi.Yi + Xi.Cin + Y,.Ciy
Xi.Yi + Cin(Xi + Y5)

This implies Ci = Gi + Pi.Cin

Here Gi = X;.Y; ... (Generate)
And Pi = X;+Y; ... (Propagate)

We need to predict the Carries: C3, C2, C1 and CO

C3=G3+P3CIN ()
C2=G2+P2C3
Substituting the value of C3, we get:
C2=G2 + P2G3 + P2P3CIN (1)
Cl=Gl+Pi1C2
Substituting the value of C2, we get:
52

Cl=0G1+P1G2 + P1P2G3 + P1P2P3CIN (1)

53

C0 =G0 + P0OC1
Substituting the value of C1, we get:
C0 =G0 +P0G1 + POP1G2 + POP1P2G3 + POP1P2P3CIN (1V)

From the above four equations, it is clear that the values of all the four Carries (C3, C2, C1, CO) can be
determined beforehand even without doing the respective additions. To do this we need the values of all
G’s (Xi.Yi) and all P’s (Xi+Yi) and the original carry input CIN. This is done by the Carry Look Ahead
Generator Circuit.

Cycle 1: g1, p1, 92, P2, 93, P3, go, Poare given to the carry look ahead generator.
Cycle 2: Input carries are given to the adders by the carry generator.

Cycle 3: Results are produced.

Total number of cycles required :3

Multiplication:
1) Shift and Add: This method is used to multiply two unsigned numbers. When we multiply two “N-

bit” numbers, the answer is “2 x N” bits. Three registers A, Q and M, are used for this process. Q
contains the Multiplier and M contains the Multiplicand. A (Accumulator) is initialized with 0. At the end
of the operation, the Result will be stored in (A & Q) combined. The process involves addition and
shifting. That is why it is called shift and add method.

Algorithm:

The number of steps required is equal to the number of bits in the multiplier.

1) At each step, examine the current multiplier bit starting from the LSB.

2) If the current multiplier bit is “1”, then the Partial-Product is the Multiplicand itself.

3) If the current multiplier bit is «“0”, then the Partial-Product is the Zero.

4) At each step, ADD the Partial-Product to the Accumulator.

5) Now Right-Shift the Result produced so far (A & Q combined).

Repeat steps 1 to 5 for all bits of the multiplier.

The final answer will be in A & Q combined.

54

Multiplicand

M|

E3

—_— e —

h‘

m-hil adder

Add

Shift right

Shift and add
control logic

V=

o S

[c -3

- —

s

_| —— _‘AL|_..|QJ_,[s

™

Example: Let us consider 7X6

Fig: Shift and Add Multiplication

Multiplier

o 1 1 1 . Multiplicand (7)
X 0O 1 1 o0 . Multiplier (6)
0O 0 0 O . Partial-Product
0 1 1 1 X ?
0 1 1 1 X X ”
+ 0 O O 0 X X X ”?
0 1 0 1 0 1 O . Result (42)
Step | C A Q M Explanation
Carry | Accumulator Multiplier | Multiplicand
0 0000 0110 0111 Initial Value
1 0 0000 0110 Current Multiplier bit is
0 0000 0011 “0”so ADD “0” to
Accumulator and
Right-Shift

55

2 0 0111 0011 Current Multiplier bit is
0 0011 1001 “1” so ADD Multiplicand
to Accumulator and
Right-Shift
3 0 1010 1001 Current Multiplier bit is
0 0101 0100 “1”so ADD Multiplicand
to Accumulator and
Right-Shift
4 0 0101 0100 Current Multiplier bit is
0 0010 1010 “0” so ADD “0” to
Accumulator and
Right-Shift

2) Booth Multiplier(For signed Multiplication):

Booth’s Algorithm is used to multiply two SIGNED numbers. When we multiply two “N-bit”
numbers, the answer is “2 x N bits. Three registers A, Q and M, are used for this process.Q contains the
Multiplier and M contains the Multiplicand. A (Accumulator) is initialized with 0.At the end of the
operation, the Result will be stored in (A & Q) combined. The process involves addition, subtraction
and shifting.

Algorithm:

The number of steps required is equal to the number of bits in the multiplier.

At the beginning, consider an imaginary “0” beyond LSB of Multiplier

1) At each step, examine two adjacent Multiplier bits from Right to Left.

2) If the transition is from 0 to 1” then Subtract M from A and Right-Shift (A & Q) combined.

3) If the transition is from “1 to 0” then ADD M to A and Right-Shift.

4) If the transition is from “0 to 0” then simply Right-Shift.

5) If the transition is from “1 to 1” then simply Right-Shift.

Repeat steps 1 to 5 for all bits of the multiplier.

The final answer will be in A & Q combined.

56

Flowchart for Booth’s Algorithm:

A&
M < Multiplicand
Q ¢ Multiplier
Count < n

0,Q_ ¢ 0

A «

|

Arithmetic shift
L Right: A, Q,Q_,

Count < Count - 1

|

No /\ Yes
C

ount = 07 END

Example: -9x10=-90
Multiplicand (M): -9 =10111 9 =01001. (Two’s Complement Form)
Multiplier (Q): 10 =01010. -10=10110 (Two’s Complement Form)

step A Q Q-1 |M

Accumulator Multiplier Multiplicand

Initial 00000 01010 0 10111

1) (0¢0) 00000 01010 0

No Add or Sub 00000 00101 0

Right-Shift

57

2)(1¢0) 01001 00101 0
Perform (A - M) 00100 10010 1
Right-Shift
3)(0¢1) 11011 10010 1
Perform (A + M) 11101 11001 0
Right-Shift
4)(1¢0) 00110 11001 0
Perform (A - M) 00011 01100 1
Right-Shift
5 (@©0c¢1l) 11010 01100 1
Perform (A + M) 11101 00110 0
Right-Shift

Restoring and Non-Restoring Division:

Non Restoring Division:

1) Let Q register hold the divided, M register holds the divisor and A register is 0.

2) On completion of the algorithm, Q will get the quotient and A will get the remainder.

Algorithm:
The number of steps required is equal to the number of bits in the Dividend.

1) At each step, left shift the dividend by 1 position.

2) Subtract the divisor from A (perform A - M).

3) If the result is positive then the step is said to be “Successful”. In this case quotient bit will be “1”” and
Restoration is NOT Required. The Next Step will also be Subtraction.

4) If the result is negative then the step is said to be “Unsuccessful”. In this case quotient bit will be “0”.
Here Restoration is NOT Performed. Instead, the next step will be ADDITION in place of subtraction.
As restoration is not performed, the method is called Non-Restoring Division.

Repeat steps 1 to 4 for all bits of the Dividend.

Example: (7) / (5)

Dividend (Q) =7

Divisor (M) =5

Accumulator (A) =0

58

7=01115=0101
-7=1001-5=1011

59

Accumulator Dividend Divisor
A(0) Q(7) M(5)
Initial Values 0000 0111 0101
Step 1:Left shift 0000 111
A-M +1011
Unsuccessful(-ve) 1011 1110
Next step: Add
Step 2:Left shift 0111 110_
A+M +0101
Unsuccessful(-ve) 1100 1100
Next step: Add
Step 3:Left shift 1001 100_
A+M +0101
Unsuccessful(-ve) 1110 1000
Next step: Add
Step 4:Left shift 1101 000_
A+M +0101
successful(+ve) 0010 0001
Remainder:2 Quotient:1

RESTORING DIVISION (For unsigned Numbers)

1) Let Q register hold the divided, M register holds the divisor and A register is 0.
2) On completion of the algorithm, Q will get the quotient and A will get the remainder.

Algorithm:

The number of steps required is equal to the number of bits in the Dividend.

1) At each step, left shift the dividend by 1 position.

2) Subtract the divisor from A (perform A - M).

3) If the result is positive then the step is said to be “Successful”. In this case quotient bit will be “1”” and
Restoration is NOT Required.

4) If the result is negative then the step is said to be “Unsuccessful”. In this case quotient bit will
be “0”.Here Restoration is performed by adding back the divisor.

Hence the method is called Restoring Division. Repeat steps 1 to 4 for all bits of the Dividend.

60

Accumulator

Quotient (multiplier)

Divisor (multiplicand)

register register
EEENE S :
:]
RS ") u
—l ;
A
Parallel
" adder-subtracter & 2n{ n4
nq
,n Cont.rol
unit
\/ v
Remainder R Quotient Q D VvV
Example: (6) / (4)
Dividend (Q) =6
Divisor (M) =4
Accumulator (A)=0
6 = 0110 4 = 0100
-6 =1010 -4 = 1100
Accumulator Dividend Divisor
A(0) Q(6) M(4)
Initial Values 0000 0110 0100
Step 1:Left shift 0000 110
A-M + 1100
Unsuccessful(-ve) 1100
Restoration: 0000 1100
Step 2:Left shift 0001 100
A-M +1100
Unsuccessful(-ve) 1101
Restoration: 0001 1000
Step 3:Left shift 0011 000 _
A-M +1100
Unsuccessful(-ve) 1111
Restoration: 0011 0000

61

Step 3:Left shift 0110 000_

A-M +1100

Successful(+ve) 0010

No Restoration 0001
Remainder(2) Quotient(1)

RESTORING DIVISION FOR SIGNED NUMBERS:

1) Let M register hold the divisor, Q register hold the divided.
2) A register should be the signed extension of Q.
3) On completion of the algorithm, Q will get the quotient and A will get the remainder.

Algorithm:
The number of steps required is equal to the number of bits in the Dividend.

2) At each step, left shift the dividend by 1 position.

3) If Sign of A and M is the same then Subtract the divisor from A (perform A - M),

Else Add M to A

4) After the operation, If Sign of A remains the same or the dividend (in A and Q) becomes zero, then the
step is said to be “Successful”. In this case quotient bit will be “1” and Restoration is NOT Required.

5) If Sign of A changes, then the step is said to be “Unsuccessful”. In this case quotient bit will be
“0”.Here Restoration is Performed. Hence, the method is called Restoring Division. Repeat steps 1 to 4
for all bits of the Dividend.

Note: The result of this algorithm is such that, the quotient will always be positive and the remainder
will get the same sign as the dividend.

Example: (-19) / (7)

19=0100117 =000111

-19=101101 -7 = 111001

Accumulator Dividend | Divisor

A(Sign Extension) Q(-19) M(7)
Initial Values 111111 101101 000111
Step 1: Left-shift 111111 01101 _

Sign(A,M) Different: A+M | + 000111
Sign changes: Unsuccessful | 000110
Restore 111111 011010

62

Step 2: Left-shift 111110 11010_
Sign(A,M) Different: A+M | + 000111
Sign changes: Unsuccessful | 000101
Restore 111110 110100
Step 3: Left-shift 111101 10100 _
Sign(A,M) Different: A+M | + 000111
Sign changes: Unsuccessful | 000100
Restore 111101 101000
Step 4: Left-shift 111011 01000 _
Sign(A,M) Different: A+M | + 000111
Sign changes: Unsuccessful | 000010
Restore 111011 010000
Step 5: Left-shift 110110 10000 _
Sign(A,M) Different: A+M | + 000111
Sign still same: Successful | 111101
Restoration not required 111101 100001
Step 6: Left-shift 111011 00001_
Sign(A,M) Different: A+M | + 000111
Sign changes: Unsuccessful | 000010
Restore 111011 000010
Remainder(-5) Quotient(2)

Carry-save Array Multiplier

Important advance in improving the speed of multipliers, pioneered by Wallace, is the use of carry save
jers (CSA). Even though the building block is still the multiplying adder (ma), the topology of prevents a
ple carry by ensuring that, wherever possible, the carry-out signal propagates downward and not sideways.
Istration below gives an example of this multiplication process.

63

10 1 0 1 0 multiplicand (A)

14 1 1 1 0 X multiplier (B)
T DD[}[} partial product (bgxA)
1[}1[}1— o -:p-a;i;:produa[biﬂ]
1 01 0+ E partia:product (bgxA)
1[}1[}+ N -:p-a;i;:praduct[bgmj
T TN A f'T-"D = carry T
L40 10001 1 00 product (AxB)

Inside a carry-save array multiplier

Again, the building block is the multiplying adder (ma) as describe on the previous page. However, th
topology is so that the carry-out from one adder is not connected to the carry-in of the next adder. Henc
preventing a ripple carry. The circuit diagram below shows the connections between these blocks.

4-bit carry-save array multiplier

The observant reader might notice that maOx can be replaced with simple AND gates, ma4x can L
replaced by adders. Also the block ma43 is not needed. More interesting, the the ripple adder in the la
row, can be replace with the faster carry look ahead adder.

Similar to the carry-propagate array multiplier, using Verilog HDL we can generate instances of ma block
based on the word length of the multiplicand and multiplier (N). To describe the circuit in Verilog HDL
we need to derive the rules that govern the connections between the blocks.

Start by numbering the output ports based on their location in the matrix. For this circuit, we have th
output signals sum (s) and carry-out (c). E.g. ¢_13 identifies the carry-out signal for the block in row 1 an
column 3. Next, we express the input signals as a function of the output signal names s and ¢ and do tr
same for the product itself as shown in the table below.

64

https://coertvonk.com/technology/unfinished/fpga-math-verilog-12758/5
https://coertvonk.com/wp-content/uploads/math-multiplier-carry-save-example.png

output ports

S0 3 2 1 jj=0 co 3 2 1 jj=0
0 s02 s01 s00 p0 ii=0 c03 c02 c01 c00
1 s12 s11 s10 pl 1 c13 <12 «cl1 «cl0
2 s22 s21 s20 p2 2 c23 22 21 c20
3 s32 531 s30 p3 3 ¢33 32 31 30
p?7 p6 p5 p4d 4 p8 cd2 c4l c40

input ports

x 3 2 1 jj=0 y 3 2 1 ji=0
=0 a3 a2 al a0 ii=0 b0 b0 b0 b0
1 a3 a2 al a0 1 bl bl bl bl
2 a3 a2 al a0 2 b2 b2 b2 b2
3 a3 a2 al a0 3 b3 b3 b3 b3
4 c42 c41 c40 0 4

si 3 2 1 jji=0 ci 3 2 1 jj=0
ii=0 0 0 0 0 i=0 0 0 0 0
1 0 502 s01 s00 1 c03 c02 c01 c00
2 0 s12 s11 s10 2 cl3 12 11 <10
3 0 522 s21 s20 3 c23 c22 c21 c20
4 0 532 s31 s30 4 ¢33 c32 c31 c30
yduct output
p 6 5 4 3 2 1 0 0

543 542 s41 s40 s30 s20 s10 s00

[N R A) B Y |

iction for output signals 'so’ and ‘co’ and output signals 'x’, 'y’, 'si’, ‘ci" and ‘p’

ied on this table, we can now express the interconnects using Verilog HDL using ?: expressions.

generate genvar ii, Jj;
for (ii = 0; ii <;= N; ii = ii + 1) begin: gen ii
for (jj = 0; Jjj <; N; jj = jj + 1) begin: gen_jj
math multiplier ma block ma(
-x (i1 <; N 2 afljjl @ (33 > 0) 2 c[NJ[jj-1]

1'b0),
.y (11 <; N ? b[ii] : 1'bl),
.si (ii > 0 j3 <; N - 17?2 s[ii-1][33+1] : 1'bO
)y
ci (ii > 07?2 c[ii-11[33j] = 1'b0O),
so (s[iil([331),
co (cliil[331)):
if (i1 == N) assignpIN+jj] = sIN][3j];
end
assignpl[ii] = s[1i][0];
end
endgenerate
Results

The propagation delay tpd depends size N and the value of operands. For a given size N, the maximur
propagation delay occurs when the low order bit cause a carry/sum that propagate to the highest order bi
This worst-case propagation delay is linear with 2N, this makes this carry-save multiplier is about 33¢
faster as the ripple-carry multiplier. Note that the average propagation delay is about half of this.he pos
map Timing Analysis tool shows the worst-case propagation delays for the Terasic Altera Cyclone IV DE(
Nano. The exact value depends on the model and speed grade of the FPGA, the silicon itself, voltage an
the die temperature.

N Timing Analysis Measured
slow 85°C slow 0°C fast 0°C| actual
4-bits 90ns 80ns 5.6ns

65

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=593
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=593
https://coertvonk.com/wp-content/uploads/math-multiplier-carry-save-tbl3.png

8-bits
16-bits
27-bits
32-bits

18.7 ns
30.9 ns
46.8 ns
579 ns

16.8ns 11.4 ns|
27.6ns 18.3 ng|
41.9ns 27.7 ns|
51.6 ns 34.3 ns|

66

MODULE-3

CPU CONTROL UNIT
DESIGN

o Hardwired CU :
In Hardwired CU, control signals are produced by hardware. There are three types of Hardwired Control
Units

1) STATE TABLE METHOD
2) DELAY ELEMENT METHOD
3) SEQUENCE COUNTER METHOD
STATE TABLE METHOD:
1) It is the most basic type of hardwired control unit.
2) Here the behavior of the control unit is represented in the form of a table called the state table.
3) The rows represent the T-states and the columns indicate the instructions.
4) Each intersection indicates the control signal to be produced, in the corresponding T-state of

every instruction.
4) A circuit is then constructed based on every column of this table, for each instruction.

INSTRUCTIONS
T-STATES
I, I In
T1 Zi Z1,2 Zi,M
T2 Z3.1 23,2 Zan
T a1 L,z LM

Z1,1: Control Signal to be produced in T-state (T,) of Instruction {I,)

ADVANTAGE: It is the simplest method and is ideally suited for very small instruction sets.

DRAWBACK:As the number of instructions increase, the circuit becomes bigger and hence more
complicated. As a tabular approach is used, instead of a logical approach (flowchart), there are
duplications of many circuit elements in various instructions.

Delay Element Method:

1) Here the behavior of the control unit is represented in the form of a flowchart.
2) Each step in the flowchart represents a control signal to be produced.

3) Once all steps of a particular instruction, are performed, the complete instruction gets executed.

5) Hence between every two steps of the flowchart, there must be a delay element.

)

)

)
4) Control signals perform Micro-Operations, which require one T-states each.

)
6) The delay must be exactly of one T-state. This delay is achieved by D Flip-Flops.
)

7) These D Flip-Flops are inserted between every two consecutive control signals.

67

c1 —> C1
\ 4
—> o
N Flip-Flop
c1
——> c2
! ,,

8) Of all D Flip-Flops only one will be active at a time. So the method is also called “One Hot Method”.

9) Ina multiple entry point, to combine two or more paths, we use an OR gate.

g

10) A decision box is replaced by a set of two complementing AND ga

l l

68

11) A multiple entry point is substituted by an OR gate.
ADVANTAGE:

As the method has a logical approach, it can reduce the circuit complexity. This is done by re-utilizing
common elements between various instructions.

DRAWBACK:

As the no of instructions increase, the number of D Flip-Flops increase, so the cost increases. Moreover,
only one of those D Flip-Flops are actually active at a time.

SEQUENCE COUNTER METHOD:

Start S Q

Mod - k

Counter

L Sequence counter
Eﬂd . Rebe'

Clock

Reset

1) This is the most popular form of hardwired control unit. The goal of this circuit is to provide triggers to
different parts of the circuit after gaps of 1-Tstate.

2) It follows the same logical approach of a flowchart, like the Delay element method, but does not use all
those unnecessary D Flip-Flops because at any point of time only one delay element is active and a
complex circuitry would involve many delay elements which is very inefficient. The D-Flip-flops are
replaced by trigger points which are activated after gaps of one T-state.

Following are the steps involved in designing a CU using Sequence Counter Method.

1) First a flowchart is made representing the behavior of a control unit.

2) It is then converted into a circuit using the same principle of AND & OR gates.

3) We need a delay of 1 T-state (one clock cycle) between every two consecutive control signals.
)

4) That is achieved by the above circuit.

69

5) If there are “k” number of distinct steps producing control signals, we employ a “mod k™ and “k”output
decoder.

6) The counter will start counting at the beginning of the instruction.
7) The “clock” input via an AND gate ensures each count will be generated after 1 T-state.

8) The count is given to the decoder which triggers the generation of “k” control signals, each aftera delay
of 1 T-state.

9) When the instruction ends, the counter is reset so that next time, it begins from the first count.
ADVANTAGE:

Avoids the use of too many D Flip-Flops.

GENERAL DRAWBACKS OF A HARDWIRED CONTROL UNIT

1) Since they are based on hardware, as the instruction set increases, the circuit becomes more and more
complex. For modern processors having hundreds of instructions, it is virtually impossible to create
Hardwired Control Units.

2) Such large circuits are very difficult to debug.

3) As the processor gets upgraded, the entire Control Unit has to be redesigned, due to the rigid nature of
hardware design.

Micro programmed CU
WILKES’ DESIGN FOR A MICROPROGRAMMED CONTROL UNIT:

1) Micro programmed Control Unit produces control signals by software, using micro-instructions
2) A program is a set of instructions.

3) An instruction requires a set of Micro-Operations.

4) Micro-Operations are performed by control signals.

5) Instead of generating these control signals by hardware, we use micro-instructions. This means every
instruction requires a set of micro-instructions This is called its micro-program.

6) Micro programs for all instructions are stored in a small memory called “Control Memory”. The
Control memory is present inside the processor.

7) Consider an Instruction that is fetched from the main memory into the Instruction Register (IR).

8) The processor uses its unique “opcode” to identify the address of the first micro-instruction. That
address is loaded into CMAR (Control Memory Address Register). CMAR passes the address to the
decoder.

9) The decoder identifies the corresponding micro-instruction from the Control Memory.
10) A micro-instruction has two fields: a control filed and an address field.

Control field: Indicates the control signals to be generated.

Address field: Indicates the address of the next micro-instruction.

11) This address is further loaded into CMAR to fetch the next micro-instruction.

70

12) For a conditional micro-instruction, there are two address fields. This is because, the address of the
next micro-instruction depends on the condition. The condition (true or false) is decided by the
appropriate control flag.

13) The control memory is usually implemented using FLASH ROM as it is writable yet non-volatile.

ADVANTAGES

1) The biggest advantage is flexibility.

2) Any change in the control unit can be performed by simply changing the micro-instruction.

3) This makes modifications and up gradation of the Control Unit very easy.

4) Moreover, software can be much easily debugged as compared to a large Hardwired Control Unit.
DRAWBACKS

1) Control memory has to be present inside the processor, increasing its size.

2) This also increases the cost of the processor.

3) The address field in every micro-instruction adds more space to the control memory. This can be easily
avoided by proper micro-instruction sequencing.

Instruction fetched from
Main Memory

!

IR
Address of next micro-instruction
Address of first
micro-instruction
vy Y V‘
CMAR
ConTrROL MEMORY
e S B sl ol RSPRS00 B PSSO
i Each row Is a micro-instruction
Yy v v !
0 —@ s 2 O—I
o1 4eld I
2 | Q—IL
DEecODER 3 F

(3:8) H .
z =

-
AppRress FIELD |
’

N aoun b

v v v v
C;C;C; C
€7CsCsCa C3C2C1C0 grurys Frac
ConTroOL FIELD (For Conditional Instruction)
(Generates Control Signais)

TYPICAL MICROPROGRAMMED CONTROL UNIT

1) Microprogrammed Control Unit produces control signals by software, using micro-instructions.

71

Z) A program Is a Set ot Instructions.

72

3) An instruction requires a set of Micro-Operations.

4) Micro-Operations are performed by control signals.

5) Here, these control signals are generated using micro-instructions.

6) This means every instruction requires a set of micro-instructions

7) This is called its micro-program.

8) Micro programs for all instructions are stored in a small memory called “Control Memory”.

9) The Control memory is present inside the processor.

10) Consider an Instruction that is fetched from the main memory into the Instruction Register (IR).
11) The processor uses its unique “opcode” to identify the address of the first micro-instruction.
12) That address is loaded into CMAR (Control Memory Address Register) also called ulR.

13) This address is decoded to identify the corresponding p-instruction from the Control Memory.
14) There is a big improvement over Wilkes’ design, to reduce the size of micro-instructions.

15) Most micro-instructions will only have a Control field.

16) The Control field Indicates the control signals to be generated.

17) Most micro-instructions will not have an address field.

18) Instead, uPC will simply get incremented after every micro-instruction.

19) This is as long as the p-program is executed sequentially.

20) If there is a branch p-instruction only then there will be an address filed.

21) If the branch is unconditional, the branch address will be directly loaded into CMAR.

22) For Conditional branches, the Branch condition will check the appropriate flag.

23) This is done using a MUX which has all flag inputs.

24) If the condition is true, then the MUX will inform CMAR to load the branch address.

25) If the condition is false CMAR will simply get incremented.

26) The control memory is usually implemented using FLASH ROM as it is writable yet non-volatile.

ADVANTAGES

1) The biggest advantage is flexibility.

2) Any change in the control unit can be performed by simply changing the micro-instruction.

3) This makes modifications and up gradation of the Control Unit very easy.

4) Moreover, software can be much easily debugged as compared to a large Hardwired Control Unit.
5) Since most micro-instructions are executed sequentially, they don’t need for an address field.

6) This significantly reduces the size of micro-instructions, and hence the Control Memory.

DRAWBACKS

73

1) Control memory nhas to be present Inside the processor, increasing Its size.

74

2) This also increases the cost of the processor.

CMAR (pPC) |* +1

Yy

MUX
Selects Flag input

Status
Flags

v

CM
CONTROL MEMORY

A 4

Branch Branch
Condition Address Control Field

75

Memory System Design

Memory system design: Semiconductor memory technologies, memory organization.

Memory organization: Memory interleaving, concept of hierarchical memory organization, Cache
memory, mapping functions, Replacement algorithms, write policies, Virtual Memory Management

Semiconductor Memory Technologies:

Semiconductor random-access memories (RAMs) are available in a wide range of speeds.
Their cycle times range from 100 ns to less than 10 ns. Semiconductor memory is used in any
electronics assembly that uses computer processing technology. The use of semiconductor memory has
grown, and the size of these memory cards has increased as the need for larger and larger amounts of
storage is needed.

There are two main types or categories that can be used for semiconductor technology.
RAM - Random Access Memory: As the names suggest, the RAM or random access memory is a
form of semiconductor memory technology that is used for reading and writing data in any order - in
other words as it is required by the processor. It is used for such applications as the computer or
processor memory where variables and other stored and are required on a random basis. Data is stored
and read many times to and from this type of memory.

Cs1

Cs2 . ; s

o 8-bit
databus

WR

AD7

Block Diagram Representing 128 x 8 RAM
(Random Access Memory)

ROM - Read Only Memory: A ROM is a form of semiconductor memory technology used where the
data is written once and then not changed. In view of this it is used where data needs to be storec
permanently, even when the power is removed - many memory technologies lose the data once the
power is removed. As a result, this type of semiconductor memory technology is widely used for storing
programs and data that must survive when a computer or processor is powered down. For example the
BIOS of a computer will be stored in ROM. As the name implies, data cannot be easily written to ROM
Depending on the technology used in the ROM, writing the data into the ROM initially may require
special hardware. Although it is often possible to change the data, this gain requires special hardware tc
erase the data ready for new data to be written in.

Chip Selectl CS¢
Chip Select 2 CS; 512x8 8-Bit Unidirectional
—
ROM Data Bus
9- Bit Address AD;-ADq
I Y N Y

The different memory types or memory technologies are detailed below:

DRAM: Dynamic RAM is a form of random access memory. DRAM uses a capacitor to store each bit
of data, and the level of charge on each capacitor determines whether that bit is a logical 1 or 0.
However these capacitors do not hold their charge indefinitely, and therefore the data needs to b
refreshed periodically. As a result of this dynamic refreshing it gains its name of being a dynamic RAM
DRAM is the form of semiconductor memory that is often used in equipment including persona
computers and workstations where it forms the main RAM for the computer.

EEPROM: This is an Electrically Erasable Programmable Read Only Memory. Data can be written tc
it and it can be erased using an electrical voltage. This is typically applied to an erase pin on the chip.
Like other types of PROM, EEPROM retains the contents of the memory even when the power is turnec
off. Also like other types of ROM, EEPROM is not as fast as RAM.

EPROM: This is an Erasable Programmable Read Only Memory. This form of semiconductor
memory can be programmed and then erased at a later time. This is normally achieved by exposing the
silicon to ultraviolet light. To enable this to happen there is a circular window in the package of the
EPROM to enable the light to reach the silicon of the chip. When the PROM is in use, this window is
normally covered by a label, especially when the data may need to be preserved for an extended period.
The PROM stores its data as a charge on a capacitor. There is a charge storage capacitor for each cell
and this can be read repeatedly as required. However it is found that after many years the charge may
leak away and the data may be lost. Nevertheless, this type of semiconductor memory used to be widely
used in applications where a form of ROM was required, but where the data needed to be changed
periodically, as in a development environment, or where quantities were low.

FLASH MEMORY: Flash memory may be considered as a development of EEPROM technology
Data can be written to it and it can be erased, although only in blocks, but data can be read on ar
individual cell basis. To erase and re-programme areas of the chip, programming voltages at levels tha
are available within electronic equipment are used. It is also non-volatile, and this makes it particularh
useful. As a result Flash memory is widely used in many applications including memory cards for digita
cameras, mobile phones, computer memory sticks and many other applications.

F-RAM: Ferroelectric RAM is a random-access memory technology that has many similarities to the
standard DRAM technology. The major difference is that it incorporates a ferroelectric layer instead of
the more usual dielectric layer and this provides its non-volatile capability. As it offers a non-volatile
capability, F-RAM is a direct competitor to Flash.

MRAM: This is Magneto-resistive RAM, or Magnetic RAM. It is a non-volatile RAM memory
technology that uses magnetic charges to store data instead of electric charges. Unlike technologies
including DRAM, which require a constant flow of electricity to maintain the integrity of the data,
MRAM retains data even when the power is removed. An additional advantage is that it only requires
low power for active operation. As a result this technology could become a major player in the
electronics industry now that production processes have been developed to enable it to be produced.

P-RAM / PCM: This type of semiconductor memory is known as Phase change Random Access
Memory, P-RAM or just Phase Change memory, PCM. It is based around a phenomenon where a form
of chalcogenid glass changes is state or phase between an amorphous state (high resistance) and a
polycrystalline state (low resistance). It is possible to detect the state of an individual cell and hence use
this for data storage. Currently this type of memory has not been widely commercialized, but it is
expected to be a competitor for flash memory.

77

PROM: This stands for Programmable Read Only Memory. It is a semiconductor memory which can
only have data written to it once - the data written to it is permanent. These memories are bought in a
blank format and they are programmed using a special PROM programmer. Typically a PROM will
consist of an array of fusible links some of which are "blown" during the programming process to
provide the required data pattern.

SDRAM: Synchronous DRAM. This form of semiconductor memory can run at faster speeds than
conventional DRAM. It is synchronized to the clock of the processor and is capable of keeping two sets
of memory addresses open simultaneously. By transferring data alternately from one set of addresses,
and then the other, SDRAM cuts down on the delays associated with non-synchronous RAM, which
must close one address bank before opening the next.

SRAM: Static Random Access Memory. This form of semiconductor memory gains its name from th
fact that, unlike DRAM, the data does not need to be refreshed dynamically. It is able to support faste
read and write times than DRAM (typically 10 ns against 60 ns for DRAM), and in addition its cycl
time is much shorter because it does not need to pause between accesses. However it consumes mor
power, is less dense and more expensive than DRAM. As a result of this it is normally used for caches
while DRAM is used as the main semiconductor memory technology.

MEMORY ORGANIZATION

Memory Interleaving:

Pipeline and vector processors often require simultaneous access to memory from two or mort
sources. An instruction pipeline may require the fetching of an instruction and an operand at the sam
time from two different segments.

Similarly, an arithmetic pipeline usually requires two or more operands to enter the pipeline ¢
the same time. Instead of using two memory buses for simultaneous access, the memory can b
partitioned into a number of modules connected to a common memory address and data buses. /
memory module is a memory array together with its own address and data registers. Figure 9-13 shows
memory unit with four modules. Each memory array has its own address register AR and data registe
DR.

Figure 9-13 Multiple module memory organization.

Address bus
Y Y Y |
AR AR AR AR
Y Y Y Y
Memory Memory Memory Memory
armay array array armray
A 'y A A
Y Y Y Y
DR DR DR DR
A A A A
Y \ | \ i
Data bus

78

The address registers receive information from a common address bus and the data register
communicate with a bidirectional data bus. The two least significant bits of the address can be used t
distinguish between the four modules. The modular system permits one module to initiate a memor
access while other modules are in the process of reading or writing a word and each module can honor
memory request independent of the state of the other modules.

The advantage of a modular memory is that it allows the use of a technique called interleaving
In an interleaved memory, different sets of addresses are assigned to different memory modules. Fo
example, in a two-module memory system, the even addresses may be in one module and the od
addresses in the other.

Concept of Hierarchical Memory Organization
This Memory Hierarchy Design is divided into 2 main types:
External Memory or Secondary Memory
Comprising of Magnetic Disk, Optical Disk, Magnetic Tape i.e. peripheral storage devices which
are accessible by the processor via I/0 Module.
Internal Memory or Primary Memory
Comprising of Main Memory, Cache Memory & CPU registers. This is directly accessible by the
Processor.

Memory Hierarchy in a Computer System:

! Register ¢) 4 ™
o Magnetic
Memory anes i !
ey
N Increasing order of Cache Auxiliary Memory I/O Processor
access time ratio Memory -
| Magnetic |)
Main Memory Primary Memory k disks |

Magnetic Disks Ay cPU

Memory

Magnetic Tapes

Characteristics of Memory Hierarchy

Capacity:

It is the global volume of information the memory can store. As we move from top to bottom in
the Hierarchy, the capacity increases.
Access Time:

It is the time interval between the read/write request and the availability of the data. As we move
from top to bottom in the Hierarchy, the access time increases.
Performance:

Earlier when the computer system was designed without Memory Hierarchy design, the speed
gap increases between the CPU registers and Main Memory due to large difference in access time. This
results in lower performance of the system and thus, enhancement was required. This enhancement was
made in the form of Memory Hierarchy Design because of which the performance of the system
increases. One of the most significant ways to increase system performance is minimizing how far down
the memory hierarchy one has to go to manipulate data.

Cost per bit:

As we move from bottom to top in the Hierarchy, the cost per bit increases i.e. Internal Memory

is costlier than External Memory.

79

Cache Memories:

The cache is a small and very fast memory, interposed between the processor and the main
memory. Its purpose is to make the main memory appear to the processor to be much faster than it
actually is. The effectiveness of this approach is based on a property of computer programs called
locality of reference.

Analysis of programs shows that most of their execution time is spent in routines in which many
instructions are executed repeatedly. These instructions may constitute a simple loop, nested loops, or a
few procedures that repeatedly call each other.

The cache memory can store a reasonable number of blocks at any given time, but this number i
small compared to the total number of blocks in the main memory. The correspondence between th
main memory blocks and those in the cache is specified by a mapping function.

When the cache is full and a memory word (instruction or data) that is not in the cache is
referenced, the cache control hardware must decide which block should be removed to create space for
the new block that contains the referenced word. The collection of rules for making this decision
constitutes the cache’s replacement algorithm.

Cache Hits

The processor does not need to know explicitly about the existence of the cache. It simply issues
Read and Write requests using addresses that refer to locations in the memory. The cache control
circuitry determines whether the requested word currently exists in the cache.
If it does, the Read or Write operation is performed on the appropriate cache location. In this case, a reac
or write hit is said to have occurred.

Cache Misses
A Read operation for a word that is not in the cache constitutes a Read miss. It causes the block
of words containing the requested word to be copied from the main memory into the cache.

Cache Mapping:

There are three different types of mapping used for the purpose of cache memory which are as
follows: Direct mapping, Associative mapping, and Set-Associative mapping. These are explained as
following below.

Direct mapping

The simplest way to determine cache locations in which to store memory blocks is the direct
mapping technique. In this technique, block j of the main memory maps onto block j modulo 128 of th
cache, as depicted in Figure 8.16. Thus, whenever one of the main memory blocks 0, 128, 256, . . . i
loaded into the cache, it is stored in cache block 0. Blocks 1, 129, 257, . . . are stored in cache block 1
and so on. Since more than one memory block is mapped onto a given cache block position, contentio
may arise for that position even when the cache is not full.

For example, instructions of a program may start in block 1 and continue in block 129, possibl
after a branch. As this program is executed, both of these blocks must be transferred to the block-
position in the cache. Contention is resolved by allowing the new block to overwrite the currentl
resident block.

With direct mapping, the replacement algorithm is trivial. Placement of a block in the cache is
determined by its memory address. The memory address can be divided into three fields, as shown in
Figure 8.16. The low-order 4 bits select one of 16 words in a block.

When a new block enters the cache, the 7-bit cache block field determines the cache position in
which this block must be stored. If they match, then the desired word is in that block of the cache. If
there is no match, then the block containing the required word must first be read from the main memory
and loaded into the cache.

The direct-mapping technique is easy to implement, but it is not very flexible.

80

Main
memory

Block0 |

Block |

Cache Rlock 127
Biocko i Block 128
Block 1 Block 129

tag B 7
[s B Block 127

Block 255
Riock 256

Block 257

| Block 4095

Tag Block Word
I 5 I 7 I 4 IMu:nn'»:mﬂr_\' address

Figure 8.16 Direc-mapped cache.

Associative Mapping

In Associative mapping method, in which a main memory block can be placed into any cach
block position. In this case, 12 tag bits are required to identify a memory block when it is resident in th
cache. The tag bits of an address received from the processor are compared to the tag bits of each blocl
of the cache to see if the desired block is present. This is called the associative-mapping technigue.

Main
memary

Cache

Block 0
Block 1

3%
%
¥

Block 127

Tag Word

Figure 8.17 Assodative-mopped coche.

It gives complete freedom in choosing the cache location in which to place the memory block
resulting in a more efficient use of the space in the cache. When a new block is brought into the cache, i
replaces (ejects) an existing block only if the cache is full. In this case, we need an algorithm to seleci
the block to be replaced.

81

To avoid a long delay, the tags must be searched in parallel. A search of this kind is called an
associative search.

Set-Associative Mapping

Another approach is to use a combination of the direct- and associative-mapping techniques.
The blocks of the cache are grouped into sets, and the mapping allows a block of the main memory to
reside in any block of a specific set. Hence, the contention problem of the direct method is eased by
having a few choices for block placement.

Main
MEmOy

Rlock O

Rlock |

Block 63

Block 65

Block 127

Set63 = Block 126
: Block 127
Block 129
Block 4005
Tag Set Word
I i I b I 4 I Main memory address

Figure 8.18 Set-ossociative-mapped coche with two blodks per sat.

At the same time, the hardware cost is reduced by decreasing the size of the associative search.
An example of this set-associative-mapping technique is shown in Figure 8.18 for a cache with two
blocks per set. In this case, memory blocks 0, 64, 128, . . ., 4032 map into cache set 0, and they can
occupy either of the two block positions within this set.

Having 64 sets means that the 6-bit set field of the address determines which set of the cache
might contain the desired block. The tag field of the address must then be associatively compared to the
tags of the two blocks of the set to check if the desired block is present. This two-way associative
search is simple to implement.

The number of blocks per set is a parameter that can be selected to suit the requirements
of a particular computer. For the main memory and cache sizes in Figure 8.18, four blocks per set can b
accommodated by a 5-bit set field, eight blocks per set by a 4-bit set field, and so on. The extrem
condition of 128 blocks per set requires no set bits and corresponds to the fully-associative technique
with 12 tag bits. The other extreme of one block per set is the direct-mapping.

82

Replacement Algorithms

In a direct-mapped cache, the position of each block is predetermined by its address;
hence, the replacement strategy is trivial. In associative and set-associative caches there exists
some flexibility.

When a new block is to be brought into the cache and all the positions that it may occupy are full,
the cache controller must decide which of the old blocks to overwrite.

This is an important issue, because the decision can be a strong determining factor in
system performance. In general, the objective is to keep blocks in the cache that are likely to be
referenced in the near future. But, it is not easy to determine which blocks are about to be
referenced.

The property of locality of reference in programs gives a clue to a reasonable strategy.
Because program execution usually stays in localized areas for reasonable periods of time, there is a
high probability that the blocks that have been referenced recently will be referenced again soon.
Therefore, when a block is to be overwritten, it is sensible to overwrite the one that has gone the
longest time without being referenced. This block is called the least recently used (LRU) block, and
the technique is called the LRU replacement algorithm.

The LRU algorithm has been used extensively. Although it performs well for many access
patterns, it can lead to poor performance in some cases.

Write Policies
The write operation is proceeding in 2 ways.

e Write-through protocol
e Write-back protocol

Write-through protocol:
Here the cache location and the main memory locations are updated simultaneously.

Write-back protocol:

e This technique is to update only the cache location and to mark it
as withassociated flag bit called dirty/modified bit.

e The word in the main memory will be updated later, when the block
containing thismarked word is to be removed from the cache to make room
for a new block.

e Toovercome the read miss Load —through / Early restart protocol is used.

Virtual Memory Management /Paging:

In most modem computer sysiems, the physical main memory is not as large as the
address space spanned by an address issued by the processor. For example, a processor
that issues 32-bit addresses has an addressable space of 4G bytes. The size of the main
memory in a typical computer ranges from a few hundred megabytes to 1G bytes. When
a program does not completely fit into the main memory, the parts of it not currently
being executed are stored on secondary storage devices, such as magnetic disks. Of
course, all parts of a program that are eventually executed are first brought into the

83

Fig: Virtual Memory Organization

Processor
]
Virtual address
]
Data MMU
Physical address
1]
Cache
1
Data Physical address
j L
Main memory
]
DMA transfer
|
Disk storage

main memory. When a new segment of a program is to be moved into a full memory,
it must replace another segment already in the memory. In modem computers, the
operating system moves programs and data automatically between the main memory
and secondary storage. Thus, the application programmer does not need to be aware of
limitations imposed by the available main memory.

Techniques that automatically move program and data blocks into the physical main
memory when they are required for execution are called virtual-memory technigues.
Programs, and hence the processor, reference an instruction and data space that is
independent of the available physical main memory space. The binary addresses that
the processor issues for either instructions or data are called virtual or logical addresses.
These addresses are translated into physical addresses by a combination of hardware and
software components. If a virtual address refers to a part of the program or data space
that is currently in the physical memory, then the contents of the appropriate location
in the main memory are accessed immediately. On the other hand, if the referenced
address is not in the main memory, its contents must be brought into a suitable location
in the memory before they can be used.

Figure 5.26 shows a typical organization that implements virtual memory. A spe-
cial hardware unit, called the Memory Management Unit (MMU), translates virtual

addresses into physical addresses. When the desired data (or instructions) are in the
main memory, these data are fetched as described in our presentation of the cache
mechanism. If the data are not in the main memory, the MMU causes the operating
system to bring the data into the memory from the disk. Transfer of data between
the disk and the main memory is performed using the DMA scheme discussed in

Virtual address from processor

Page table base register)
! Page table address ! Virtual page mumber | Offset |
R
®
PAGE TABLE
—
—
Control !’ageframe i
bits in memory l Page frame l Offset l

l

Physical address in main memory

Fig: Virtual Memory Address Translation
Internal Memory Organization:

Memory cells are usually organized in the form of an array, in which each cell is capable of storing
one bit of information. Apossible organization is illustrated in Figure below:

by 1. % by | | b} by | | b
Wo | | |
— — >— — — —
Ay —= W, T T | \
A1 = Address Memory
decoder cells
Ay —=
A3 — /
Wis | |
Sense/Write Sense/Write Sense/Write [~ R/W
circuit circuit circuit
—-— CS
Data input/output lines: b4 b, by

85

Fig: Organization of bit cells in a memory chip.

Each row of cells constitutes a memory word, and all cells of a row are connected to a common line
referred to as the word line, which is driven by the address decoder on the chip. The cells in each
column are connected to a Sense/Write circuit by two bit lines, and the Sense/Write circuits are
connected to the data input/output lines of the chip. During a Read operation, these circuits sense, or
read, the information stored in the cells selected by a word line and place this information on the
output data lines. During a Write operation, the Sense/Write circuits receive input data and store
them in the cells of the selected word. Above figures an example of a very small memory circuit
consisting of 16 words of 8 bits each. This is referred to as a 16 x 8 organization. The data input and the
data output of each Sense/Write circuit are connected to a single bidirectional data line that can be
connected to the data lines of a computer. Two control lines, R/W and CS, are provided. The
R/W(Read/Write) input specifies the required operation, and the CS (Chip Select) input selects given
chip in a multichip memory system. The above memory circuit stores 128 bits and requires 14
external connections for address, data, and control lines. It also needs two lines for power supply and
ground connections.

Consider now a slightly larger memory circuit, one that has 1K (1024) memory cells. This circuit can be
organized as a 128 x 8 memory, requiring a total of 19 external connections. Alternatively, the same
number of cells can be organized into a 1Kx1 format. In this case, a 10-bit address is needed, but there is
only one data line, resulting in 15 external connections. Figure below shows such an organization. The
required 10-bit address is divided into two groups of 5 bits each to form the row and column addresses
for the cell array. Arrow address selects a row of 32 cells, all of which are accessed in parallel. But, only
one of these cells is connected to the external data line, based on the column address. For example, a
1Giga-bitchip may have a 256M x 4 organization, in which case a 28-bit address is needed and 4bits are
transferred to or from the chip.

5-bit row

address | W,
/ il
. 32x32
{ dcsc_gclitcr memory cell
T array
W
,— _/ Sl Sense/Write
: circuitry
10-bit J—//—————— T T t
address /N
32-to-1 —
: - R/W
[output multiplexer
| and s
\ input demultiplexer '
5-bit column |

address

Data
input/output

Fig: Organization of a 1K x 1 memory chip.

Memory Hierarchy

e The total memory capacity of a computer can be visualized as being a hierarchy of components.

86

The memory hierarchy system consists of all storage devices employed In a computer system

87

from the slow but high-capacity secondary memory to a relatively faster main memory, to an even
smaller and faster cache memory accessible to the high-speed processing logic.

e The purpose of any memory device is to store programs and data. Several types of memory
devices are used in the computer forming a Memory Hierarchy. Each plays a specific role
contributing to the speed, cost effectiveness, portability etc.

Main Memory

The memory unit that communicates directly with the CPU is called the main memory. It comprises of
RAM and ROM, both are Semi-Conductor memories. (chip memories). ROM is non-volatile. It is used is
storing permanent information like the BIOS program. It is typically of 2 MB - 4 MB in size.RAM is
writable and hence is used for day-to-day operations. Every file that we access from secondary memory,
is first loaded into RAM. The main memory occupies

a central position by being able to communicate directly with the CPU and with auxiliary memory
devices through an UO processor. To provide large amount of working space RAM is typically 4 GB - 8
GB.

Secondary Memory (Auxiliary Memory):

Devices that provide backup storage are called auxiliary memory. The most common auxiliary memory
devices used in computer systems are magnetic disks and tapes. They are used for storing system
programs, large data files, and other backup information. Only pro-grams and data currently needed by
the processor reside in main memory. When programs not residing in main memory are needed by the
CPU, they are brought in from auxiliary memory. The main purpose of Secondary Memory is to increase
the storage capacity, at low cost. Its biggest component is the Hard Disk. It is writeable as well as non-
volatile. Typical size of a HD is 1 TB. Disk memories are much slower than chip memories but are also
much cheaper.

Cache Memory:

The cache memory is employed in computer systems to compensate for the speed differential between
main memory access time and processor logic. CPU logic is usually faster than main memory access
time, with the result that processing speed is limited primarily by the speed of main memory. A technique
used to compensate for the mismatch in operating speeds is to employ an extremely fast, small cache
between the CPU and main memory whose access time Is dose to processor logic dock cycle time. It is
the fastest form of memory as it uses SRAM (Static RAM).The Main Memory uses DRAM (Dynamic
RAM).SRAM uses flip-flops and hence is much faster than DRAM which uses capacitors. But SRAM is
also very expensive as compared to DRAM. Hence only the current portion of the file we need to access
is copied from Main Memory (DRAM)to Cache memory (SRAM), to be directly accessed by the
processor. This gives maximum performance and yet keeps the cost low. While the VO processor
manages data transfers between auxiliary memory and main memory, the cache organization is
concerned with the transfer of information between main memory and CPU .Typical size of Cache is
around 2 MB — 8MB. If code and data are in the same cache then it is unified cache else its called split
cache. Depending upon the location of cache, it is of three types: L1, L2 and L3.L1 cache is present
inside the processor and is a split cache typically 4-8 KB.L2 is present on the same die as the processor
and is a unified cache typically 1 MB.L3 is present outside the processor. It is also unified and is
typically of 2-8 MB.

Magnetic Tapes

—> |/o

Processor [«————» Main

Magnetic Disks | ¢ > Memory
—

Cache
Memory

CPU

A

A

88

Fig: Memory Hierarchy in a computer system

89

The reason for having two or three levels of memory hierarchy is economics. As the storage capacity of
the memory increases, the cost per bit for storing binary information decreases and the access time of the
memory becomes longer. The auxiliary memory has a large storage capacity, is relatively inexpensive,
but has low access speed compared to main memory. The cache memory is very small, relatively
expensive, and has very high access speed. Thus as the memory access speed increases, so does its
relative cost. The overall goal of using a memory hierarchy is to obtain the highest-possible average
access speed while minimizing the total cost of the entire memory system.

Memory Interleaving

Pipeline and vector processors often require simultaneous access to memory from two or more sources.
An instruction pipeline may require the fetching of an instruction and an operand at the same time from
two different segments. Similarly, an arithmetic pipeline usually requires two or more operands to enter
the pipeline at the same time. Instead of using two memory buses for simultaneous access, the memory
can be partitioned into a number of modules connected to a common memory address and data buses. A
memory module is a memory array together with its own address and data registers. Figure below shows
a memory unit with four modules.

Address bus
Y Y l
AR AR AR AR
Y 1 Y l
Memory Memory Memory Memory
array array array array
DR DR DR DR

Data bus

Fig: Multiple module memory organization.

Each memory array has its own address register AR and data register DR . The address registers receive
information from a common address bus and the data registers communicate with a bidirectional data
bus. The two least significant bits of the address can be used to distinguish between the four modules.
The modular system permits one module to initiate a memory access while other modules are in the
process of reading or writing a word and each module can honor a memory request independent of the
state of the other modules. The advantage of a modular memory is that it allows the use of a technique
called interleaving. In an interleaved memory, different sets of addresses are assigned to different
memory modules. For example, in a two-module memory system, the even addresses may be in one
module and the odd addresses in the other. When the number of modules is a power of 2, the least
significant bits of the address select a memory module and the remaining bits designate the specific
location to be accessed within the selected module. A modular memory is useful in systems with pipeline
and vector processing. A vector processor that uses an n-way interleaved memory can fetch operands

90

from n different modules. By staggering the memory access, the effective memory cycle time can be
reduced by

91

a factor close to the number of modules. A CPU with instruction pipeline can take advantage of multiple
memory modules so that each segment in the pipeline can access memory independent of memory access
from other segments.

Cache Memory:
The cache is a small and very fast memory, interposed between the processor and the main memory. Its
purpose is to make the main memory appear to the processor to be much faster than it actually is.

Main
memory

Cache -

Y

Processor

Fig: Use of Cache Memory
operation of a cache memory is very simple. The memory control circuitry is designed to take advantage
of the property of locality of reference. Temporal locality suggests that whenever an information item,
instruction or data, is first needed, this item should be brought into the cache, because it is likely to be
needed again soon. Spatial locality suggests that instead of fetching just one item from the main memory
to the cache, it is useful to fetch several items that are located at adjacent addresses as well. The
termcache block refers to a set of contiguous address locations of some size. Another term that
is often used to refer to a cache block is a cache line.
When the processor issues a Read request, the contents of a block of memory words containing the
location specified are transferred into the cache. Subsequently, when the program references any of the
locations in this block, the desired contents are read directly from the cache. Usually, the cache memory
can store a reasonable number of blocks at any given time, but this number is small compared to the total
number of blocks in the main memory. The correspondence between the main memory blocks and those
in the cache is specified by a mapping function. When the cache is full and a memory word (instruction
or data) that is not in the cache is referenced, the cache control hardware must decide which block should
be removed to create space for the new block that contains the referenced word. The collection of rules
for making this decision constitutes the cache’s replacement algorithm.

Cache Hits:

The processor does not need to know explicitly about the existence of the cache. It simply issues Read
andWrite requests using addresses that refer to locations in the memory. The cache control circuitry
determines whether the requested word currently exists in the cache. If it does, the Read or Write
operation is performed on the appropriate cache location. In this case, a read or write hit is said to have
occurred. The main memory is not involved when there is a cache hit in a Read operation. For a Write
operation, the system can proceed in one of two ways. In the first technique, called the write-through
protocol, both the cache location and the main memory location are updated. The second technique is to
update only the cache location and to mark the block containing it with an associated flag bit, often called
the dirty or modified bit. The main memory location of the word is updated later, when the block
containing this marked word is removed from the cache to make room fora new block. This technique is
known as the write-back, or copy-back, protocol.

The write-through protocol is simpler than the write-back protocol, but it results in unnecessary Write
operations in the main memory when a given cache word is updated several times during its cache
residency. The write-back protocol also involves unnecessary Write operations, because all words of the
block are eventually written back, even if only a single word has been changed while the block was in the
cache. The write-back protocol is used most often, to take advantage of the high speed with which data
blocks can be transferred to memory chips.

92

Cache Misses

93

A Read operation for a word that is not in the cache constitutes a Read miss. It causes the block of words
containing the requested word to be copied from the main memory into the cache. After the entire block
is loaded into the cache, the particular word requested is forwarded to the processor. Alternatively, this
word may be sent to the processor as soon as it is read from the main memory. The latter approach,
which is called load-through, or early restart, reduces the processor’s waiting time somewhat, at the
expense of more complex circuitry.

When a Write miss occurs in a computer that uses the write-through protocol, the information is written
directly into the main memory. For the write-back protocol, the block containing the addressed word is
first brought into the cache, and then the desired word in the cache is overwritten with the new
information.

Peripheral Devices and Their Characteristics

/o Device Interface:

Introduction: Input-output interface provides a method for transferring information between
internal storage and external 1/0 devices. Peripherals(I/O Devices) connected to a computer
need special communication links for interfacing them with the central processing unit. The
purpose of the communication link is to resolve the differences that exist between the central
computer and each peripheral.

The major differences are:

1. Peripherals are electromechanical and electromagnetic devices and their manner of operation
is different from the operation of the CPU and memory, which are electronic devices.
Therefore, a conversion of signal values may be required.

2. The data transfer rate of peripherals is usually slower than the transfer rate of the CPU, and
consequently, a synchronization mechanism may be needed.

3. Data codes and formats in peripherals differ from the word format in the CPU and memory.

4. The operating modes of peripherals are different from each other and each must be
controlled so as not to disturb the operation of other peripherals connected to the CPU.

To resolve these differences, computer systems include special hardware components between
the CPU and peripherals to supervise and synchronize all input and output transfers. These
components are called interface units because they interface between the processor bus and
the peripheral device. In addition, each device may have its own controller that supervises the
operations of the particular mechanism in the peripheral.

/0 Bus and Interface Modules:

A typical communication link between the processor and several peripherals

is shown below:
" D /O bus - ’ —
—— _T_ ' - Address
- — - 11_ Conerol

T

Fig: Connection of 1/O bus to input-output devices.

95

The 1/0 bus consists of data lines, address lines, and control lines. Each peripheral device has
associated with it an interface unit.

Each interface decodes the address and control received from the 1/0O bus, interprets them for
the peripheral, and provides signals for the peripheral controller. It also synchronizes the data
flow and supervises the transfer between peripheral and processor.

Each peripheral has its own controller that operates the particular electromechanical device.
For example, the printer controller controls the paper motion, the print timing, and the
selection of printing characters. A controller may be housed separately or may be physically
integrated with the peripheral.

The 1/0 bus from the processor is attached to all peripheral interfaces. To communicate with
a particular device, the processor places a device address on the address lines. Each interface
attached to the 1/0 bus contains an address decoder that monitors the address lines. When
the interface detects its own address, it activates the path between the bus lines and the device
that it controls. All peripherals whose address does not correspond to the address in the bus
are disabled by their interface.

At the same time that the address is made available in the address lines, the processor provides
a function code in the control lines. The interface selected responds to the function code and
proceeds to execute it. The function code is referred to as an I/0O command and is in essence
an instruction that is executed in the interface and its attached peripheral unit. There are four
types of commands that an interface may receive. They are classified as control, status, data
output, and data input.

e A control command is issued to activate the peripheral and to inform it what to do.

e A status command is used to test various status conditions in the interface and the
peripheral. For Example, the computer may wish to check the status of the peripheral
before a transfer is initiated.

e A data output command causes the interface to respond by transferring data from the
bus into one of its registers.

e The data input command is the opposite of the data output. In this case the interface
receives an item of data from the peripheral and places it in its buffer register. The
processor checks if data are available by means of a status command and then issues a
data input command. The interface places the data on the data lines, where they are
accepted by the processor.

There are three ways that computer buses can be used to communicate with memory and 1/O:

1. Use two separate buses, one for memory and the other for 1/O. (This method uses a separate
I/0 Processor alongside CPU to provide an independent pathway for the transfer of information
between external devices and internal memory.)

2. Use one common bus for both memory and 1/0 but have separate control lines for each.
3. Use one common bus for memory and 1/0 with common control lines.

Isolated 1/0: Many computers use one common bus to transfer information between memory
or 1/0 and the CPU. The distinction between a memory transfer and 1/0 transfer is made through
separate read and write lines.

96

The CPU specifies whether the address on the address lines is for a memory word or
for an interface register by enabling one of two possible read or write lines. The 1/0 read and
1/0 write control lines are enabled during an 1/0 transfer. The memory read and memory
write control lines are enabled during a memory transfer. This configuration isolates all 1/0
interface addresses from the addresses assigned to memory and is referred to as the isolated 1/0
method for assigning addresses in a common bus. In the isolated 1/0 configuration, the CPU
has distinct input and output instructions, and each of these instructions is associated with the
address of an interface register. When the CPU fetches and decodes the operation code of an
input or output instruction, it places the address associated with the instruction into the common
address lines. At the same time, it enables the 1/0 read (for input) or 1/0 write (for output) control
line. This informs the external components that are attached to the common bus that the address
in the address lines is for an interface register and not for a memory word.

Memory-mapped 1/0: Memory mapped 1/O uses the same address space for both memory
and 1/0. This is the case in computers that employ only one set of read and write signals and
do not distinguish between memory and 1/0 addresses. This configuration is referred to as
memory-mapped /0. In a memory-mapped I/O organization there are no specific input or
output instructions. The CPU can manipulate 1/0 data residing in interface registers with
the same instructions that are used to manipulate memory words. Each interface is organized
as a set of registers that respond to read and write requests in the normal address space.

Computers with memory-mapped I/O can use memory-type instructions to access I/0 data. It
allows the computer to use the same instructions for either input-output transfers or for memory
transfers. The advantage is that the load and store instructions used for reading and writing
from memory can be used to input and output data from 1/O registers. In a typical computer,
there are more memory-reference instructions than 1/O instructions. With memory-mapped I/O
all instructions that refer to memory are also available for 1/O.

DATA TRANSFER MODES:

The transfer of data between two units may be done in parallel or serial. In parallel data
transmission, each bit of the message has its own path and the total message is transmitted at
the same time. This means that an n-bit message must be transmitted through n separate
conductor paths. In serial data transmission, each bit in the message is sent in sequence one at
a time. This method requires the use of one pair of conductors or one conductor and a
common ground. Parallel transmission is faster but requires many wires. It is used for short
distances and where speed is important. Serial transmission is slower but is less expensive
since it requires only one pair of conductors.

Serial transmission can be synchronous or asynchronous.

Synchronous Data Transfer: In synchronous transmission, the two units (Sending Unit and
Receiving unit) share a common clock frequency and bits are transmitted continuously at the
rate dictated by the clock pulses. In long distant serial transmission, each unit is driven by a
separate clock of the same frequency. Synchronization signals are transmitted periodically
between the two units to keep their clocks in step with each other.

97

In asynchronous transmission, binary information is sent only when it is available and the line
remains idle when there is no information to be transmitted. This is in contrast to synchronous
transmission, where bits must be transmitted continuously to keep the clock frequency in both
units synchronized with each other.

Eg:Any two units of a digital system are designed independently, such as CPU and 1/0
interface. If the registers in the 1/O interface share a common clock with CPU registers, then
transfer between the two units is said to be synchronous.

Asynchronous Serial Transfer: A serial asynchronous data transmission technique used in
many interactive terminals employs special bits that are inserted at both ends of the character
code. With this technique, each character consists of three parts: a start bit, the character bits,
and stop bits. The convention is that the transmitter rests at the 1-state when no characters are
transmitted. The first bit, called the start bit, is always a 0 and is used to indicate the beginning
of a character. The last bit called the stop bit is always a 1.

An example of this format is shown below:

11 o 0 D‘l|01

Start
bit

<« Stop_
bits

A
.

Character bits

A transmitted character can be detected by the receiver from knowledge of the transmission
rules:

1. When a character is not being sent, the line is kept in the 1-state.
2. The initiation of a character transmission is detected from the start bit, which is always 0.
3. The character bits always follow the start bit.

4. After the last bit of the character is transmitted, a stop bit is detected when the line returns
to the 1-state for at least one bit time.

Asynchronous way of data transfer can be achieved using two methods:
1) Strobe control
2) Handshaking

Strobe Control Method: The Strobe Control method of asynchronous data transfer employs
a single control line to time each transfer. This control line is also known as a strobe, and it
* may be achieved either by source or destination, depending on which initiate the transfer.

Source initiated strobe: In the below block diagram, strobe is initiated by source, and as
shown in the timing diagram, the source unit first places the data on the data bus.

98

Data Bus

Destination
Strobe Unit

(a) Block Diagram

Data <«——Valid Data—>»

Strobe

(b) Timing Diagram

After a brief delay, the source activates a strobe pulse. The information on the data bus and
strobe control signal remains in the active state for a sufficient time to allow the destination
unit to receive the data. The destination unit uses a falling edge of strobe control to transfer
the contents of a data bus to one of its internal registers. The source removes the data from

the data bus after it disables its strobe pulse. Thus, new valid data will be available only after
the strobe is enabled again.

Example: The strobe may be a memory-write control signal from the CPU to a memory unit.

Destination initiated strobe: In the below block diagram, the strobe initiated by destination,

and in the timing diagram, the destination unit first activates the strobe pulse, informing the
source to provide the data.

Data Bus

Destination

Strobe Unit

(a) Block Diagram

Data <«—Valid Data——>»

Strobe

(b) Timing Diagram

99

The falling edge of the strobe pulse can use again to trigger a destination register. The
destination unit then disables the strobe. Finally, and source removes the data from the data
bus after a determined time interval.

Example: the strobe may be a memory read control from the memory unit to CPU.

Handshaking Method: The strobe method has the disadvantage that the source unit that
initiates the transfer has no way of knowing whether the destination has received the data that
was placed in the bus. Similarly, a destination unit that initiates the transfer has no way of
knowing whether the source unit has placed data on the bus.

So this problem is solved by the handshaking method. The handshaking method introduces a
second control signal line.

In this method, one control line is in the same direction as the data flow in the bus from the
source to the destination. The source unit uses it to inform the destination unit whether there
are valid data in the bus.

The other control line is in the other direction from the destination to the source. This is because
the destination unit uses it to inform the source whether it can accept data. And in it also, the
sequence of control depends on the unit that initiates the transfer. So it means the sequence of
control depends on whether the transfer is initiated by source and destination.

Source initiated handshaking: In the below block diagram, two handshaking lines are "data
valid", which is generated by the source unit, and "data accepted", generated by the destination
unit.

Data Bus
Data Valid
Data Accepted

Source Unit

(a) Block Diagram

Data bus | <« Valid Data—> |
Data valid \ /4

Data Accepted

(b) Timing Diagram

The timing diagram shows the timing relationship of the exchange of signals between the two
units. The source initiates a transfer by placing data on the bus and enabling its data valid
signal. The destination unit then activates the data accepted signal after it accepts the data from
the bus.

The source unit then disables its valid data signal, which invalidates the data on the bus. After
this, the destination unit disables its data accepted signal, and the system goes into its initial
state. The source unit does not send the next data item until after the destination unit shows

100

readiness to accept new data by disabling the data accepted signal. This sequence of events
described in its sequence diagram, which shows the above sequence in which the system is
present at any given time.

Destination initiated handshaking: In the below block diagram, the two handshaking lines
are "data valid", generated by the source unit, and "ready for data" generated by the
destination unit.

Data Bus
Source Uinit Data Valid Destination
Ready for data Unit

[(a) Block Diagram

Ready for data
N

Data valid

Data bus \4 <—Valid Data—>

(b) Timing Diagram

Source Unit Destination Unit

Place data on bus Ready to accept data
Enable data valid Enable ready for data

Disable data valid P Accept data from bus
imvalidate data on bus M Disable ready for data
[Initial State)

[c] Sequence Diagram (Sequence of events)

1/0O Transfers:

Binary information received from an external device is usually stored in memory for later
processing. Information transferred from the central computer into an external device
originates in the memory unit. The CPU merely executes the 1/0 instructions and may accept
the data temporarily, but the ultimate source or destination is the memory unit. Data transfer
between the central computer and 1/0 devices may be handled in a variety of modes. Some
modes use the CPU as an intermediate path; others transfer the data directly to and from the
memory unit. Data transfer to and from peripherals may be handled in one of three possible
modes:

1) Program Controlled 1/0O

2) Interrupt-initiated 1/0

3) Direct memory access (DMA)

1. Program Controlled 1/0: Programmed 1/0 operations are the result of 1/0 instructions
written in the computer program. CPU executes a program that transfers data between
I/0 device and memory. Each data item transfer is initiated by an instruction in the
program. Usually, the transfer is to and from a CPU register and peripheral. Other

101

instructions are needed to transfer the data to and from CPU and memory.
Transferring data under program control requires constant monitoring of the peripheral
by the CPU. Once a data transfer is initiated, the CPU is required to monitor the
interface to see when a transfer can again be made. In the programmed 1/0 method, the
CPU stays in a program loop until the 1/0 unit indicates that it is ready for data transfer.
This is a time-consuming process since it keeps the processor busy needlessly.

Example of Programmed 1/0:

In the programmed 1/0 method, the 1/0 device does not have direct access to memory. A transfer
from an 1/0 device to memory requires the execution of several instructions by the CPU,
including an input instruction to transfer the data from the device to the CPU and a store
instruction to transfer the data from the CPU to memory. Other instructions may be needed to
verify that the data are available from the device and to count the numbers of words transferred.

An example of data transfer from an /O device through an interface into the CPU is shown in
Fig below:

Interface
_Data bus < /0 bus
Address bus _ Data register
. Data valid 10
- o >) device
10 write > Status F Data accepted
- I'Cng[EI' -
F = Flag bit

The device transfers bytes of data one at a time as they are available. When a byte of data is
available, the device places it in the 1/0 bus and enables its data valid line. The interface accepts
the byte into its data register and enables the data accepted line. The interface sets a bit in the
status register that we will refer to as an F or "flag" bit. The device can now disable the data
valid line, but it will not transfer another byte until the data accepted line is disabled by the
interface.

A program is written for the computer to check the flag in the status register to determine if a
byte has been placed in the data register by the VO device. This is done by reading the status
register into a CPU register and checking the value of the flag bit. If the flag is equal to 1, the
CPU reads the data from the data register. The flag bit is then cleared to 0 by either the CPU
or the interface, depending on how the interface circuits are designed. Once the flag is cleared,
the interface disables the data accepted line and the device can then transfer the next data byte.
A flowchart of the program that must be written for the CPU is shown in Fig below. It is
assumed that the device is sending a sequence of bytes that must be stored in memory. The
transfer of each byte requires three instructions:

1 Read the status register.

102

2. Check the status of the flag bit and branch to step 1 if not set or to step 3 if set.

3. Read the data register.

r Read data register —l

¥

| Check flag bit 1

| Read status register l

T

| Transfer data to memory I

Operation
complete?

Continue
with

program

Each byte is read into a CPU register and then transferred to memory with a store instruction.
A common I/O programming task is to transfer a block of words from an 1/0 device and store
them in a memory buffer. The programmed VO method is particularly useful in small low-
speed computers or in systems that are dedicated to monitor a device continuously.

2) INTERRUPT DRIVEN 1/O:

1) In interrupt driven 1/O, the transfer is not initiated by the processor.

2) Instead, an 1/O device which wants to perform a data transfer with the processor,
must give an interrupt to the processor.

3) An interrupt is a condition that makes the processor execute an ISR (Interrupt Service
Routine).

4) In the ISR, processor will perform data Transfer with the 1/0 device.

5) This relieves the processor from periodically checking the status of every 1/O device
thereby saves as

lot of time of the processor.

6) The processor is free to carry on its own operations.

7) Whenever a device wants to transfer data, it will interrupt the processor.

8) This is how many 1/O devices Transfer data with the processor.

103

9) E.g.:: Keyboard. Instead of the processor checking all the time, whether a key is pressed,
the

keyboard interrupts the processor as an when we press a key. In the ISR of the keyboard,
which is a

part of the keyboard driver software, the processor will read the data from the keyboard.

10) Hence interrupt driven 1/O is much better than Polled 1/0 (Programmed 1/O).
INTERRUPT HANDLING MECHANISM

1) When an interrupt occurs, processor, firstly, finishes the current instruction.

2) It then suspends the current program and executes an ISR.

3) To do so, it Pushes the value of PC (address of next instruction), into the stack.

4) Now it loads the ISR address into PC and proceeds to execute the ISR,

5) At the end of the ISR, it POPs the return address from the stack and loads it back into PC.
6) This is how the processor return to the very next instruction in the program.

Main Program ISR

Interrupt

1/O device is ready for
a data Transfer

Perform data Transfer
with I/O device

INTERRUPT DRIVEN I/O PoLLING (PROGRAMMED 1/0)
I/0 device interrupts the processor Processor periodically checks (polls) the
1 | whenever it wants to perform a data status of every I/0 device to know if it
Transfer. wants to perform a data Transfer.
Processor is free to carry on its own Processor is busy in constantly checking all
2 - - - .
operations, hence saves system time. I/0 devices, hence system time wasted.

Additional hardware required to handle
3 | interrupts. E.g.:: 8259 Programmable Additional hardware not required.
interrupt controller.

Increases cost and complexity of the

system. System is cheaper and less complex.

Interrupt priority has to be managed

through software or through hardware. No such issue.

Interrupt vector addresses (ISR
6 | Addresses) need to be stored in an No such issue.
Interrupt Vector table - IVT.

104

3) DMA BASED 1/0

DMA means transferring data directly between memory and 1/0.

DMA transfers are very fast as compared to Processor based transfers due to two reasons.

1. They are hardware based so no time is wasted in fetching and decoding instructions.

2. Transfers are directly between memory and 1/O without data going via the Processor.

To Perform a DMA transfer we need a DMA Controller like 8237/ 8257.

It is capable of taking control of the buses from the Processor.

The process is performed as follows.

1) By Default Processor is the bus master.

2) The DMA transfer parameters first initialized by the processor.

3) Processor programs two registers inside the DMAC called CAR and CWCR giving the
starting

address and the number of bytes to be transferred.

4) DMAC now ensures that the 1/0 device is ready for the transfer by checking the DREQ
signal.

5) If DREQ=1, then DMAC gives HOLD signal to the Processor requesting control of the
system bus.

6) Processor releases control of the bus after finishing the current machine (bus) cycle.

7) Processor gives HLDA informing DMAC that it is now the bus master.

8) DMAC issues DACK# (by default active low, but can be changed) to I/O device indicating
that the

transfer is about to begin.

9) Now DMAC transfers one byte in one cycle.

10) After every byte is transferred the Address register and Count register are decremented
by 1.

11) This repeats till Count reaches “0” also called Terminal Count.

12) Now the transfer is complete.

13) DMAC returns the system bus to Processor by making HOLD = 0.

14) Processor once again becomes bus master.

Advantage of DMA

DMA transfers are very fast.

Drawback of DMA

DMAC becomes the bus master. Hence during DMA cycles, the processor cannot perform any
operations

as the bus is already being used for DMA. The processor remains in HOLD state.

Difference between Interrupt Request and DMA request

When an interrupt occurs, the processor has to suspend the current program, execute the ISR
and then

return to the next instruction of the main program. Hence it is necessary that the processor
completes the current instruction before servicing an interrupt request.

When a DMA request occurs, the processor has to simply relinquish (give away) control of the
system bus

and enter hold state. When ever it gets back the bus it can resume from where it had left.
Hence the processor need not finish the current instruction before servicing a DMA request.
It simply has to finish the current machine cycle. Hence Instruction cycles are Interrupt
Breakpoints and Machine cycles are DMA breakpoints.

105

DMA Operation

Address
Lalches
A
ADO 'AD1 q r— -t 0\ Address bus
ALE e '°B
Data bus
A
Microprocessor :_& Memory
B
Control bus A
o Control bus
TOR . IOW -
HLDA HOLD | MEMR , MEMW l—g
HRQ
DMA
HLDA controller Control bus
————————————{ Peripharal
IOR , IOW device
MEMR , MEMW (disk
DREQ controller)
DACK,

TYPES / METHODS / TECHNIQUES OF DMA TRANSFERS

There are four modes of data transfer:

1) BLOCK TRANSFER MODE / BURST MODE.

In this mode, the DMAC is programmed to transfer ALL THE BYTES in one complete DMA
operation. After a byte is transferred, the CAR and CWCR are adjusted accordingly. The
system bus is returned to the processor, ONLY after all the bytes are transferred. It is the
fastest form of DMA but keeps the processor inactive for a long time.

2) SINGLE BYTE TRANSFER MODE/ CYCLE STEALING.

Once the DMAC becomes the bus master, it will transfer only ONE BYTE and return the bus
to the processor. As soon as the processor performs one bus cycle, DMAC will once again take
the bus back from the processor. Hence both DMAC and processor are constantly stealing
bus cycles from each other. It is the most popular method of DMA, because it keeps the
processor active in the background. After a byte is transferred, the CAR and CWCR are
adjusted accordingly.

3) DEMAND TRANSFER MODE.

It is very similar to Block Transfer, except that the DREQ must remain active throughout
the DMA operation. If during the operation DREQ goes low, the DMA operation is stopped
and the busses are returned to the processor.

In the meantime, the processor can continue with its own operations. Once DREQ goes high
again, the DMA operation continues from where it had stopped. This means, the transfer
happens on demand from the 1/O device, hence the name.

4) HIDDEN MODE / TRANSPARENT MODE.

106

In this mode, once the processor programs all parameters inside the DMAC, the DMAC
does not request the processor for the control of the bus. Instead, it observes the processor. It
waits for the processor to enter idle state. Once the processor is idle, the DMAC will take
control of the bus and perform the Transfer. So, the Transfer is totally transparent to the
processor or hidden from the processor. Hence the name.

Interrupts and Exceptions:

Interrupt

The term Interrupt is usually reserved for hardware interrupts. They are program control
interruptions caused by external hardware events. Here, external means external to the CPU.
Hardware interrupts usually come from many different sources such as timer chip, peripheral
devices (keyboards, mouse, etc.), I/O ports (serial, parallel, etc.), disk drives, CMOS clock,
expansion cards (sound card, video card, etc). That means hardware interrupts almost never
occur due to some event related to the executing program.

Example —

An event like a key press on the keyboard by the user, or an internal hardware timer timing out
can raise this kind of interrupt and can inform the CPU that a certain device needs some
attention. In a situation like that the CPU will stop whatever it was doing (i.e. pauses the current
program), provides the service required by the device and will get back to the normal program.
When hardware interrupts occur and the CPU starts the ISR, other hardware interrupts are
disabled (e.g. in 80x86 machines). If you need other hardware interrupts to occur while the ISR
is running, you need to do that explicitly by clearing the interrupt flag (with sti instruction). In
80x86 machines, clearing the interrupt flag will only affect hardware interrupts.

Exception
Exception is a software interrupt, which can be identified as a special handler routine. An

exception occurs due to an “exceptional” condition that occurs during program execution.

Example —
Division by zero, execution of an illegal opcode or memory related fault could cause

exceptions. Whenever an exception is raised, the CPU temporarily suspends the program it was
executing and starts the ISR. ISR will contain what to do with the exception. It may correct the
problem or if it is not possible it may abort the program gracefully by printing a suitable error
message. Although a specific instruction does not cause an exception, an exception will always
be caused by an instruction. For example, the division by zero error can only occur during the
execution of the division instruction.

Exceptions and interrupts are unexpected events which will disrupt the normal flow of
execution of instruction (that is currently executing by processor). An exception is an
unexpected event from within the processor. Interrupt is an unexpected event from outside the
processor. Whenever an exception or interrupt occurs, the hardware starts executing the code
that performs an action in response to the exception. This action may involve killing a process,
outputting an error message, communicating with an external device, or horribly crashing the
entire computer system by initiating a “Blue Screen of Death” and halting the CPU. The
instructions responsible for this action reside in the operating system kernel, and the code that
performs this action is called the interrupt handler code. handler code is an operating system
subroutine. Then, After the handler code is executed, it may be possible to continue execution
after the instruction where the execution or interrupt occurred.

107

Whenever an exception or interrupt occurs, execution transitions from user mode to kernel
mode where the exception or interrupt is handled. The following steps must be taken to handle
an exception or interrupts:
While entering the kernel, the context (values of all CPU registers) of the currently executing
process must first be saved to memory. The kernel is now ready to handle the
exception/interrupt.

1) Determine the cause of the exception/interrupt.

2) Handle the exception/interrupt.
When the exception/interrupt have been handled the kernel performs the following steps:

1) Select a process to restore and resume.

2) Restore the context of the selected process.

3) Resume execution of the selected process.
At any point in time, the values of all the registers in the CPU defines the context of the CPU.
Another name used for CPU context is CPU state.
Types of interrupts:

1. VECTORED AND NON-VECTORED INTERRUPTS

A key element in interrupt handling is the ISR address.

If an interrupt has a fixed ISR address, it is called a Vectored interrupt.

Such interrupts are executed faster as the ISR address is known to the processor.

But such interrupts are rigid. Since they have a fixed ISR address they can serve only one
device. They cannot accept interrupts from multiple devices. So they cannot expand the
interrupt structure.

E.g: NMI interrupt of 8086 (Has a fixed vector number i.e. 2)

If an interrupt does not have a fixed ISR address, it is called a Non-Vectored interrupt.
Such interrupts are executed slower. The ISR address is obtained from the interrupting
device, usually an interrupt controller like 8259. But such interrupts are flexible. Since they
don’t have a fixed ISR address they can accept interrupts from multiple devices. So they
can be used to expand the interrupt structure.

E.g: INTR interrupt of 8086 (Can service any vector number from 0... 255)

2. MASKABLE AND NON MASKABLE INTERRUPTS

Masking an interrupt means disabling it. A Mask able interrupt is an interrupt that can be
disabled. If disabled, whenever this interrupt occurs, the processor will ignore it and simply
continue the main program. Such interrupts are generally used to handle low priority, non-
critical events like keyboard presses which can be easily disabled (Keypad can be locked)

E.g.;: INTR interrupt of 8086 (is disabled when Interrupt Flag is 0)

A Non-Mask able interrupt is an interrupt that cannot be disabled. Whenever this interrupt
occurs, the processor will have to service it. Such interrupts are generally used to handle high
priority, critical events like over-heating of the mother board, power failure etc.

E.g.:: NMI interrupt of 8086 (can never be disabled)

3. SOFTWARE AND HARDWARE INTERRUPTS

This is based on how the interrupt occurs.

If an interrupt is caused by writing an instruction, it is called a software
interrupt(Exception). Software interrupts are predictable events and are given by the
programmer.

108

E.g.:: INT n instruction of 8086 (n can be anything between 0... 255)

If an interrupt is caused by a signal on an external pin, it is called a hardware interrupt.
Hardware interrupts are un-predictable events and are given by external devices.

E.g.:: NMl and INTR pins of 8086

1/O Device Interfaces:

Universal Serial Bus (USB):

The Universal Serial Bus (USB) [1] is the most widely used interconnection standard. A large
variety of devices are available with a USB connector, including mice, memory keys, disk
drives, printers, cameras, and many more. The commercial success of the USB is due to its
simplicity and low cost. The original USB specification supports two speeds of operation,
called low-speed (1.5 Megabits/s) and full-speed (12 Megabits/s). Later, USB 2, called High-
Speed USB, was introduced. It enables data transfers at speeds up to 480 Megabits/s. As 1/0
devices continued to evolve with even higher speed requirements, USB 3 (called Superspeed)
was developed. It supports data transfer rates up to 5 Gigabits/s.

The USB has been designed to meet several key objectives:
* Provide a simple, low-cost, and easy to use interconnection system

» Accommodate a wide range of I/O devices and bit rates, including Internet connections, and
audio and video applications

« Enhance user convenience through a “plug-and-play” mode of operation

Plug-and-Play

When an 1/0O device is connected to a computer, the operating system needs some information
about it. It needs to know what type of device it is so that it can use the appropriate device
driver. It also needs to know the addresses of the registers in the device’s interface to be able
to communicate with it. The USB standard defines both the USB hardware and the software
that communicates with it. Its plug-and-play feature means that when a new device is
connected, the system detects its existence automatically. The software determines the kind of
device and how to communicate with it, as well as any special requirements it might have. As
a result, the user simply plugs in a USB device and begins to use it, without having to get
involved in any of these details. The USB is also hot-pluggable, which means a device can be
plugged into or removed from a USB port while power is turned on.

USB Architecture:

The USB uses point-to-point connections and a serial transmission format. When multiple
devices are connected, they are arranged in a tree structure as shown in Figure below:

109

Host computer

7o} /O

device device

Each node of the tree has a device called a hub, which acts as an intermediate transfer point
between the host computer and the I/O devices. At the root of the tree, a root hub connects

the entire tree to the host computer. The leaves of the tree are the 1/0 devices: a mouse, a
keyboard, a printer, an Internet connection, a camera, or a speaker.

If 1/0 devices are allowed to send messages at any time, two messages may reach the hub at
the same time and interfere with each other. For this reason, the USB operates strictly on the
basis of polling. A device may send a message only in response to a poll message from the host
processor. Hence, no two devices can send messages at the same time. This restriction allows
hubs to be simple, low-cost devices. Each device on the USB, whether it is a hub or an 1/0
device, is assigned a 7-bit address. The root hub of the USB, which is attached to the processor,
appears as a single device. The host software communicates with individual devices by sending
information to the root hub, which it forwards to the appropriate device in the USB tree.
When a device is first connected to a hub, or when it is powered on, it has the address 0.
Periodically, the host polls each hub to collect status information and learn about new devices
that may have been added or disconnected. When the host is informed that a new device has
been connected, it reads the information in a special memory in the device’s USB interface to
learn about the device’s capabilities. It then assigns the device a unique USB address and writes
that address in one of the device’s interface registers. It is this initial connection procedure that
gives the USB its plug-and-play capability.

Isochronous Traffic on USB

An important feature of the USB is its ability to support the transfer of isochronous data in a
simple manner. Isochronous data need to be transferred

at precisely timed regular intervals. To accommodate this type of traffic, the root hub transmits
a uniquely recognizable sequence of bits over the USB tree every millisecond. This sequence
of bits, called a Start of Frame character, acts as a marker indicating the beginning of
isochronous data, which are transmitted after this character. Thus, digitized audio and video
signals can be transferred in a regular and precisely timed manner.

Electrical Characteristics:

110

USB connections consist of four wires, of which two carry power, +5 V and Ground, and two
carry data. Thus, I/O devices that do not have large power requirements can be powered directly
from the USB. This obviates the need for a separate power supply for simple devices such as a
memory key or a mouse.

Two methods are used to send data over a USB cable. When sending data at low speed, a high
voltage relative to Ground is transmitted on one of the two data wires to represent a 0 and on
the other to represent a 1. The Ground wire carries the return current in both cases. Such a
scheme in which a signal is injected on a wire relative to ground is referred to as single-ended
transmission.

The speed at which data can be sent on any cable is limited by the amount of electrical noise
present. The term noise refers to any signal that interferes with the desired data signal and
hence could cause errors. Single-ended transmission is highly susceptible to noise. The voltage
on the ground wire is common to all the devices connected to the computer. Signals sent by
one device can cause small variations in the voltage on the ground wire, and hence can interfere
with signals sent by another device. Interference can also be caused by one wire picking up
noise from nearby wires. The High-Speed USB uses an alternative arrangement known as
differential signaling. The data signal is injected between two data wires twisted together. The
ground wire is not involved. The receiver senses the voltage difference between the two signal
wires directly,

without reference to ground. This arrangement is very effective in reducing the noise seen by
the receiver, because any noise injected on one of the two wires of the twisted pair is also
injected on the other. Since the receiver is sensitive only to the voltage difference between the
two wires, the noise component is cancelled out. The ground wire acts as a shield for the data
on the twisted pair against interference from nearby wires. Differential signaling allows much
lower voltages and much higher speeds to be used compared to single-ended signaling.

SCSI Bus:

The acronym SCSI stands for Small Computer System Interface. It refers to a standard bus
defined by the American National Standards Institute (ANSI). The SCSI bus may be used to
connect a variety of devices to a computer. It is particularly well-suited for use with disk drives.
It is often found in installations such as institutional databases or email systems where many
disks drives are used.

In the original specifications of the SCSI standard, devices are connected to a computer via a
50-wire cable, which can be up to 25 meters in length and can transfer data at rates of up to 5
Megabytes/s. The standard has undergone many revisions, and its data transfer capability has
increased rapidly. SCSI-2 and SCSI-3 have been defined, and each has several options. Data
are transferred either 8 bits or 16 bits in parallel, using clock speeds of up to 80 MHz. There
are also several options for the electrical signaling scheme used. The bus may use single-ended
transmission, where each signal uses one wire, with a common ground return for all signals. In
another option, differential signaling is used, with a pair of wires for each signal. wires for each
signal.

Data Transfer

Devices connected to the SCSI bus are not part of the address space of the processor in the
same way as devices connected to the processor bus or to the PCI bus. A SCSI bus may be
connected directly to the processor bus, or more likel y to another standard 1/0 bus such as
PCI, through a SCSI controller. Data and commands are transferred in the form of multi-byte
messages called packets. To send commands or data to a device, the processor assembles the
information in the memory then instructs the SCSI controller to transfer it to the device.

111

Similarly, when data are read from a device, the controller transfers the data to the memory
and then informs the processor by raising an interrupt.

To illustrate the operation of the SCSI bus, let us consider how it may be used with a disk drive.
Communication with a disk drive differs substantially from communication with the main
memory. Data are stored on a disk in blocks called sectors, where each sector may contain
several hundred bytes. When a data file is written on a disk, it is not always stored in contiguous
sectors. Some sectors may already contain previously stored information; others may be
defective and must be skipped. Hence, a Read or Write request may result in accessing several
disk sectors that are not necessarily contiguous. Because of the constraints of the mechanical
motion of the disk, there is a long delay, on the order of several milliseconds, before reaching
the first sector to or from which data are to be

transferred. Then, a burst of data are transferred at high speed. Another delay may ensue to
reach the next sector, followed by a burst of data. A single Read or Write request may involve
several such bursts. The SCSI protocol is designed to facilitate this mode of operation. Let us
examine a complete Read operation as an example. The following is a simplified high-level
description, ignoring details and signaling conventions. Assume that the processor wishes to
read a block of data from a disk drive and that these data are stored in two disk sectors that are
not contiguous. The processor sends a command to the SCSI controller, which causes the
following sequence of events to take place:

1. The SCSI controller contends for control of the SCSI bus.

2. When it wins the arbitration process, the SCSI controller sends a command to the disk
controller, specifying the required Read operation.

3. The disk controller cannot start to transfer data immediately. It must first move the read head
of the disk to the required sector. Hence, it sends a message to the SCSI controller indicating
that it will temporarily suspend the connection between them. The SCSI bus is now free to be
used by other devices.

4. The disk controller sends a command to the disk drive to move the read head to the first
sector involved in the requested Read operation. It reads the data stored in that sector and stores
them in a data buffer. When it is ready to begin transferring data, it requests control of the bus.
After it wins arbitration, it re-establishes the connection with the SCSI controller, sends the
contents of the data buffer, then suspends the connection again.

5. The process is repeated to read and transfer the contents of the second disk sector.

6. The SCSI controller transfers the requested data to the main memory and sends an interrupt
to the processor indicating that the data are now available.

This scenario shows that the messages exchanged over the SCSI bus are at a higher level than
those exchanged over the processor bus. Messages refer to more complex operations that may
require several steps to complete, depending on the device. Neither the processor nor the SCSI
controller need be aware of the details of the disk’s operation and how it moves

from one sector to the next. The SCSI bus standard defines a wide range of control messages
that can be used to handle different types of 1/0 devices. Messages are also defined to deal with
various error or failure conditions that might arise during device operation or data transfer.

112

RISC vs CISC Architecture

RISC stands for Reduced Instruction set Computer and CISC stands for Complex Instruction Set

MODULE-4

Computer .RISC and CISC are the two ideologies behind making the processor.

RISC CISC

1 | Instructions of a fixed size Instructions of variable size

2 | Most instructions take same time to fetch. | Instructions have different fetching times.

3 | Instruction set simple and small. Instruction set large and complex.

4 Less addressing modes as most operations | Complex addressing modes as most operations
are register based. are memory based.

5 | Compiler design is simple Compiler design is complex
Total size of program is large as many Total size of program is small as few

6 | instructions are required to perform a task as | instructions are required to perform a task as
instructions are simple. instructions are complex & more powerful.
Instructions use a fixed number of : :

7 operands. Instructions have variable number of operands.

8 Ideal for processors performing a dedicated | Ideal for processors performing a verity of
operation. operations.

9 Since instructions are simple, they can be tsrlzslerg;s&ir:’ec:ons ane complex,
decoded by a hardwired control unit. Micro-programmed Control Unit.

10 Execution speed is faster as most operations | Execution speed is slower as most operations are
are register based. memory based.

1 As No. of cycles per instruction is fixed, it Since number of cycles per instruction varies,
gives a better degree of pipelining pipelining has more bubbles or stalls.

12 | E.g.:: ARM7, PIC 18 Microcontrollers. E.g.: Intel 8085, 8086 Microprocessors.

113

Pipelining and Parallel Processors

Basic Concepts of Pipelining :

Introduction:

1.

w

Pipelining is a technique of decomposing a sequential process into sub operations,
with each sub process being executed in a special dedicated segment that operates
concurrently with all other segments.

A pipeline can be visualized as a collection of processing segments through which
binary information flows.

Each segment performs partial processing dictated by the way the task is partitioned.
The result obtained from the computation in each segment is transferred to the next
segment in the pipeline. The final result is obtained after the data have passed through
all segments.

It is characteristic of pipelines that several computations can be in progress in distinct
segments at the same time. The overlapping of computation is made possible by
associating a register with each segment in the pipeline. The registers provide isolation
between each segment so that each can operate on distinct data simultaneously.

Pipeline organization is demonstrated by means of a simple example.

Suppose that we want to perform the combined multiply and add operations with a stream of
numbers. Ai* Bi + Cifori=1, 2, 3,...,7 Each sub operation is to be implemented in a
segment within a pipeline. Each segment has one or two registers and a combinational circuit
as shown in Fig below:

The sub operations performed in each segment of the pipeline are as follows:
R 1 <--Ai, R2 <--Bi

R3<--R1*R2, R4 <--C,

R5 <--R3 + R4

Input A, and B,
Multiply and input C,
Add C; to product

114

A B, C;
RI R2 J
\
Multiplier
Y
R3 R4
Y Y
Adder
|
RS
Example of pipeline processing.
Clock Segment 1 Segment 2 Segment 3
Pulse
Number R1 R2 R3 R4 RS
1 A, B, —_ —_— —_
2 Az B, A1* B, G, —
3 A B, Ax* B, C, Ai1*B, + C,
4 A B, Az* B, G A;x B, + (;
5 As Bs As* B, Cs A3*B; + G
6 As B As* Bs C5 As*Bs + Cs
7 A B, Ag* Bg Ce As* Bs + Cs
8 —_ —_— A, * B, s Aeg* Bs + Co
9 — - — - AT*BT + C7

Table: Contents of Registers in pipeline

The five registers are loaded with new data every clock pulse. The first clock pulse transfers
Al and Bl into R 1 and R2. The second dock pulse transfers the product of R 1 and R2 into

115

R3 and C1 into R4. The same clock pulse transfers A2 and B2 into R 1 and R2. The third clock
pulse operates on all three segments simultaneously. It places A, and B, into R1 and R2,
transfers the product of R1 and R2 into R3, transfers C, into R4, and places the sum of R3 and
R4 into RS. It takes three clock pulses to fill up the pipe and retrieve the first output from RS.
From there on, each dock produces a new output and moves the data one step down the pipeline.
This happens as long as new input data flow into the system. When no more input data are
available, the clock must continue until the last output emerges out of the pipeline.

Instruction Pipelining:

Instruction Pipelining is an implementation technique in which multiple instructions are
overlapped in execution. An instruction requires several steps which mainly involve fetching,
decoding and execution.

If these steps are performed one after the other, they will take a long time.

As processors became faster, several of these steps started to get overlapped, resulting in faster
processing. This is done by a mechanism called pipelining.

2 STAGE PIPELINING - 8086

Here the instruction process in divided into two stages of fetching and execution. Fetching of
the next instruction takes place while the current instruction is being executed. Hence two
instructions are being processed at any point of time.

| >Time
Fl‘Ei E2 E3‘E4‘E5‘

F2 F3 . F4 | F5

Overlapping fetching
and execution

Total time taken

3 STAGE PIPELINING —-ARM 7

Fi1|p1|e1|F2|p2|€e2|F3|D3|€E3|Fa|Da|Ea|F5|D5]ES

Instruction 1 Instruction 2 Instruction 3 Instruction 4 Instruction 5

EFl|D1]|El | <— Instruction 1
F2 | D2 | E2 | <= Instruction 2
F3 | D3 | E3 | <= Instruction 3

Total time taken by a
R Pipelined Processor ««-«-e-u 2>

116

Consider the case where a k-segment pipeline with a clock cycle time tp ,is used to execute n
tasks. The first task T1 requires a time equal to Kt,, to complete its operation since there are k
segments in the pipe. The remaining n - 1 tasks emerge from the pipe at the rate of one task per
clock cycle and they will be completed after a time equal to (n - 1) tp . Therefore, to complete
n tasks using a k-segment pipeline requires k + (n - 1) clock cycles.

Next consider a non-pipeline unit that performs the same operation and

takes a time equal to tn. to complete each task. The total time required for n tasks is nt,. The
speedup of a pipeline processing over an equivalent non-pipeline processing is defined by the
ratio

nt,
(k +n — l)t,,

S:

ADVANTAGE OF PIPELINING

The advantage of pipelining is that it increases the performance. As shown by the various
examples above, deeper the pipelining, more is the level of parallelism, and hence the processor
becomes much faster.

DRAWBACKS/ HAZARDS OF PIPELINING

There are various hazards of pipelining, which cause a dip in the performance of the processor.
These hazards become even more prominent as the number of pipeline stages increase.
They may occur

due to the following reasons.

1) DATA HAZARD/ DATA DEPENDENCY HAZARD

Data Hazard is caused when the result (destination) of one instruction becomes the operand
(source) of the next instruction.

Consider two instructions 11 and 12 (11 being the first).

Assume 11: INC [4000H]

Assume 12: MOV BL , [4000H]

Clearly in 12, BL should get the incremented value of location [4000H].

But this can only happen once 11 has completely finished execution and also written back the
result at [4000H].

In a multistage pipeline, 12 may reach execution stage before |11 has finished storing the result
at location [4000H], and hence get a wrong value of data.

This is called data dependency hazard.

It is solved by inserting NOP (No operation) instructions between such data dependent
instructions.

Because of the data hazard, there will be a delay in the pipeline. The data hazards are basically
of three types:

1. RAW
2. WAR
3. WAW

117

To understand these hazards, we will assume we have two instructions 11 and 12, in such a way
that 12 follows :

RAW:

RAW hazard can be referred to as 'Read after Write'. It is also known as Flow/True data
dependency. If the later instruction tries to read on operand before earlier instruction writes it,
in this case, the RAW hazards will occur. The condition to detect the RAW hazard is when O,
(Output of nth instruction) and In«(Input of n+1" instruction) both have a minimum one
common operand.

I1: add R1, R2, R3
12: sub R5, R1, R4
WAR

WAR can be referred to as 'Write after Read'. It is also known as Anti-Data dependency. If the
later instruction tries to write an operand before the earlier instruction reads it, in this case, the
WAR hazards will occur. The condition to detect the WAR hazard is when I, and On+1 both
have a minimum one common operand.

add R1, R2, R3
sub R2, R5, R4

In a reasonable (in-order) pipeline, the WAR hazard is very uncommon or impossible.
WAW

WAW can be referred to as 'Write after Write'. It is also known as Output Data dependency. If
the later instruction tries to write on operand before earlier instruction writes it, in this case, the
WAW hazards will occur. The condition to detect the WAW hazard is when O, and On+1 both
have a minimum one common operand.

add R1, R2, R3
sub R1, R2, R4

2) CONTROL HAZARD/ CODE HAZARD

Pipelining assumes that the program will always flow in a sequential manner.

Hence, it performs various stages of the forthcoming instructions before-hand, while the
current instruction is still being executed. While programs are sequential most of the times, it
IS not true always.

Sometimes, branches do occur in programs.

118

In such an event, all the forthcoming instructions that have been fetched/ decoded etc have to
be flushed/ discarded, and the process has to start all over again, from the branch address. This
causes pipeline bubbles, which simply means time of the processor is wasted. Consider the
following set of instructions:

Start:

JMP Down

INC BL

MOV CL, DL

ADD AL, BL

Down: DEC CH

JMP Down is a branch instruction.

After this instruction, program should jump to the location “Down” and continue with DEC
CH

instruction.

But, in a multistage pipeline processor, the sequentially next instructions after JMP Down have
already been fetched and decoded. These instructions will now have to be discarded and
fetching will begin all over again from DEC CH. This will keep several units of the architecture
idle for some time. This is called a pipeline bubble. The problem of branching is solved in
higher processors by a method called “Branch Prediction Algorithm”. It was introduced by
Pentium processor. It relies on the previous history of the instruction as most programs are
repetitive in nature. It then makes a prediction whether branch will be taken or not and hence
puts the correct instructions in the pipelines.

3) STRUCTURAL HAZARD

Structural hazards are caused by physical constraints in the architecture like the buses. Even
in the most basic form of pipelining, we want to execute one instruction and fetch the next one.
Now as long as execution only involves registers, pipelining is possible. But if execution
requires to read/ write data from the memory, then it will make use of the buses, which
means fetching cannot take place at the same time. So the fetching unit will have to wait
and hence a pipeline bubble is caused. This problem is solved in complex Harvard architecture
processors, which use separate memories and separate buses for programs and data. This means
fetching and execution can actually happen at the same time without any interference with each
other.

E.g.: PIC 18 Microcontroller.

Introduction to Parallel Processors:

e A multiprocessor system is an interconnection of two or more CPUs with memory and
input-output equipment. The term "processor" In multiprocessor can mean either a
central processing unit (CPU) or an input-output processor (IOP).

e However, a system with a single CPU and one or more IOPs is usually not included in
the definition of a multiprocessor system unless the IOP has computational facilities
comparable to a CPU.

e Multiprocessors are classified as multiple instruction stream, multiple data stream
(MIMD) systems.

119

e A multiprocessor system is controlled by one operating system that provides interaction
between processors and all the components of the system cooperate in the solution of a
problem.

e The fact that microprocessors take very little physical space and are very inexpensive
brings about the feasibility of interconnecting a large number of microprocessors into
one composite system.

e Very-large-scale integrated circuit technology has reduced the cost of computer
components to such a low level that the concept of applying multiple processors to meet
system performance requirements has become an attractive design possibility.

e Multiprocessing improves the reliability of the system so that a failure or error in one
part has a limited effect on the rest of the system. If a fault causes one processor to fail,
a second processor can be assigned to perform the functions of the disabled processor.
The system as a whole can continue to function correctly with perhaps some loss in
efficiency.

e A multiprocessor system derives its high performance from the fact that computations
can proceed in parallel in one of two ways.

1. Multiple independent jobs can be made to operate in parallel.
2. A single job can be partitioned into multiple parallel tasks.

e An overall function can be partitioned into a number of tasks that each processor can
handle individually. System tasks may be allocated to special purpose processors whose
design is optimized to perform certain types of processing efficiently.

e Example is a computer where one processor performs highspeed floating-point
mathematical computations and another takes care of routine data-processing tasks.

e Multiprocessors are classified by the way their memory is organized.

1. A multiprocessor system with common shared memory is classified as a shared
memory or tightly coupled multiprocessor. This does not preclude each
processor from having its own local memory. In fact, most commercial tightly
coupled multiprocessors provide a cache memory with each CPU. In addition,
there is a global common memory that all CPUs can access. Information can
therefore be shared among the CPUs by placing it in the common global
memory.

2. An alternative model of microprocessor is the distributed-memory or loosely
coupled system. Each processor element in a loosely coupled system has its
own private local memory. The processors are tied together by a switching
scheme designed to route information from one processor to another through a
message- passing scheme. The processors relay program and data to other
processors in packets. A packet consists of an address, the data content, and
some error detection code. The packets are addressed to a specific processor or
taken by the first available processor, depending on the communication system
used.

Shared Memory Multiprocessors:

e A multiprocessor system consists of a number of processors capable of
simultaneously executing independent tasks. A task may encompass a few

120

instructions for one pass through a loop, or thousands of instructions executed in a
subroutine.

In a shared-memory multiprocessor, all processors have access to the same
memory. Tasks running in different processors can access shared variables in the
memory using the same addresses. The size of the shared memory is likely to be
large.

Implementing a large memory in a single module would create a bottleneck
when many processors make requests to access the memory simultaneously.
This problem is alleviated by distributing the memory across multiple modules
so that simultaneous requests from different processors are more likely to access
different memory modules, depending on the addresses of those requests.

An interconnection network enables any processor to access any module that
is a part of the shared memory. When memory modules are kept physically
separate from the processors, all requests to access memory must pass through the
network. Below Figure shows such an arrangement.

A system which has the same network latency for all accesses from the
processors to the memory modules is called a Uniform Memory Access (UMA)
multiprocessor.

Processors

|

< Interconnection network >

}

Fig: A UMA multiprocessor.

For better performance, it is desirable to place a memory module close to each
processor. The result is a collection of nodes, each consisting of a processor and a
memory module. The nodes are then connected to the network, as shown in Figure
below:

1 M 2 * & @ MA’

Memories

121

< Interconnection network >

Fig: A NUMA multiprocessor.

The network latency is avoided when a processor makes a request to access its local
memory. However, a request to access a remote memory module must pass through
the network. Because of the difference in latencies for accessing local and
remote portions of the shared memory, systems of this type are called Non-
Uniform Memory Access (NUMA) multiprocessors.

Interconnection Networks:

The interconnection network must allow information transfer between any pair of
nodes in the system. The network may also be used to broadcast information from
one node to many other nodes. The traffic in the network consists of requests (such
as read and write)

and data transfers.

The suitability of a particular network is judged in terms of cost, bandwidth,
effective throughput, and ease of implementation. The term bandwidth refers
to the capacity of a transmission link to transfer data and is expressed in bits
or bytes per second. The effective throughput is the actual rate of data transfer.
This rate is less than the available bandwidth because a given link must also
carry control information that coordinates the transfer of data.

Information transfer through the network usually takes place in the form of
packets of fixed length and specified format. For example, a read request is likely
to be a single packet sent from a processor to a memory module. The packet contains
the node identifiers for the source and destination, the address of the location to be
read, and a command field that indicates what type of read operation is required. A
write request that writes one word in a memory module is also likely to be a single
packet that includes the data to be written. On the other hand, a read response may
involve an entire cache block requiring several packets for the data transfer.
Ideally, a complete packet would be handled in parallel in one clock cycle at
any node or switch in the network. This implies having wide links, comprising
many wires. However, to reduce cost and complexity, the links are often
considerably narrower. In such cases, a packet must be divided into smaller
pieces, each of which can be transmitted in one clock cycle.

The following are few of the interconnection networks that are commonly used in
multiprocessors:

Bus:
A bus is a set of lines (wires) that provide a single shared path for information
transfer. Buses are most commonly used in UMA multiprocessors to connect a

122

number of processors to several shared-memory modules. Arbitration is necessary
to ensure that only one of many possible requesters is granted use of the bus at
any time.

The bus is suitable for a relatively small number of processors because of the
contention for access to the bus when many processors are connected. A simple
bus does not allow a new request to appear on the bus until the response for
the current request has been provided. However, if the response latency is high,
there may be considerable idle time on the bus. Higher performance can be achieved
by using a split-transaction bus, in which a request and its corresponding
response are treated as separate events. Other transfers may take place
between them.

Ring:
A ring network is formed with point-to-point connections between nodes, as shown
in Figure below:

Fig: Simple Ring

A long single ring results in high average latency for communication between any
two nodes. This high latency can be mitigated in two different ways. A second ring
can be added to connect the nodes in the opposite direction. The resulting
bidirectional ring halves the average latency and doubles the bandwidth. However,
handling of communications is more complex.

Another approach is to use a hierarchy of rings. A two-level hierarchy is shown in
Figure below: The upper-level ring connects the lower-level rings. The average
latency for communication between any two nodes on lower-level rings is reduced
with this arrangement. Transfers between nodes on the same lower-level ring need
not traverse the

upper-level ring. Transfers between nodes on different lower-level rings include a
traversal on part of the upper-level ring.

Upper ring

Lower rings

(b) Hierarchy of rings

Crossbar:
A crossbar is a network that provides a direct link between any pair of units
connected to the network. It is typically used in UMA multiprocessors to connect

123

processors to memory modules. It enables many simultaneous transfers if the same
destination is not the target of multiple requests. Below figure shows a crossbar that
comprises a collection of switches. For n processors and k memories, n x k switches

are needed.
ey
7] 1 01

Fig: Crossbar Interconnection Network

Mesh:
A natural way of connecting a large number of nodes is with a two-dimensional
mesh, as shown in Figure below:

o) O O O

o O O O

Fig : A two-dimensional mesh network.

Each internal node of the mesh has four connections, one to each
of its horizontal and vertical neighbours. Nodes on the boundaries and corners of the mesh
have fewer neighbours and hence fewer connections. To reduce latency for communication
between nodes that would otherwise be far apart in the mesh, wrap around connections
may be introduced between nodes at opposite boundaries of the mesh. A network with

124

such connections is called a torus. All nodes in a torus have four connections. Average
latency is reduced, but the implementation complexity for routing requests and responses
through a torus is somewhat higher than in the case of a simple mesh.

Cache Coherence:

A shared-memory multiprocessor is easy to program. Each variable in a program has a
unique address location in the memory, which can be accessed by any processor.
However, each processor has its own cache. Therefore, it is necessary to deal with the
possibility that copies of shared data may reside in several caches.
When any processor writes to a shared variable in its own cache, all other caches that
contain a copy of that variable will then have the old, incorrect value. They must be
informed of the change so that they can either update their copy to the new value or
invalidate it. This is the issue of maintaining cache coherence, which requires having a
consistent view of shared data in multiple caches.
The write-through approach changes the data in both the cache and the main memory. The
write-back approach changes the data only in the cache; the main memory copy is updated
when a modified data block in the cache has to be replaced. Similar approaches can be
used to address cache coherence in a multiprocessor system.

Write Through Protocol:

A write-through protocol can be implemented in one of two ways:

1) First version is based on updating the values in other caches. When a processor writes a
new value to a block of data in its cache, the new value is also written into the memory module
containing the block being modified. Since copies of this block may exist in other caches,
these copies must be updated to reflect the change caused by the Write operation. The simplest
way of doing this is to broadcast the written data to the caches of all processors in the system.
As each processor receives the broadcast data, it updates the contents of the affected cache
block if this block is present in its cache.

2) The second version of the write-through protocol is based on invalidation of copies. When
a processor writes a new value into its cache, this value is also sent to the appropriate location
in memory, and all copies in other caches are invalidated. Again, broadcasting can be used to
send the invalidation requests throughout the system.

Write-Back protocol:

v" Maintaining coherence with the write-back protocol is based on the concept of
ownership of a block of data in the memory. Initially, the memory is the owner of all
blocks, and the memory retains ownership of any block that is read by a processor to place a
copy in its cache.

v If some processor wants to write to a block in its cache, it must first become the
exclusive owner of this block. To do so, all copies in other caches must first be invalidated
with a broadcast request. The new owner of the block may then modify the contents at will
without having to take any other action.

v' Read: When another processor wishes to read a block that has been
modified, the request for the block must be forwarded to the current owner. The data

125

are then sent to the requesting processor by the current owner. The data are also sent to the
appropriate memory module, which reacquires ownership and updates the contents of
the block in the memory. The cache of the processor that was the previous owner retains a
copy of the block. Subsequent requests from other processors to read the same block are
serviced by the memory module containing the block.

v When another processor wishes to write to a block that has been modified, the
current owner sends the data to the requesting processor. It also transfers ownership of the
block to the requesting processor and invalidates its cached copy. Since the block is being
modified by the new owner, the contents of the block in the memory are not updated. The
next request for the same block is serviced by the new owner.

v" The write-back protocol has the advantage of creating less traffic than the
write-through protocol. This is because a processor is likely to perform several writes to a
cache block

before this block is needed by another processor. With the write-back protocol, these
writes are performed only in the cache, once ownership is acquired with an invalidation
request.

Snoopy Caches:

v In multiprocessors that connect a modest number of processors to the memory
modules using a single bus, cache

coherence can be realized using a scheme known as snooping.

v"In a single-bus system, all transactions between processors and memory
modules occur via requests and responses on the bus. Suppose that each processor cache
has a controller circuit that observes, or snoops, all transactions on the bus.

v" Below are some scenarios for the write-back protocol and how cache coherence
is enforced:

» Consider a processor that has previously read a copy of a block from the
memory into its cache. Before writing to this block for the first time, the processor must
broadcast an invalidation request to all other caches, whose controllers accept the
request and invalidate any copies of the same block. This action causes the requesting
processor to become the new owner of the block. The processor may then write to the block
and mark it as being modified. No further broadcasts are needed from the same processor to
write to the modified block in its cache.

» Now, if another processor broadcasts a read request on the bus for the same
block, the memory must not respond because it is not the current owner of the block. The
processor owning the requested block snoops the read request on the bus. Because it holds a
modified copy of the requested block in its cache, it asserts a special signal on the bus to
prevent the memory from responding. The owner then broadcasts a copy of the block on
the bus, and marks its copy as clean (unmodified). The data response on the bus is accepted
by the cache of the processor that issued the read request. The data response is also accepted
by the memory to update its copy of the block. In this case, the memory reacquires
ownership of the block, and the block is said to be in a shared state because copies of it
are in the caches of two processors. Coherence is maintained because the two cached copies
and the copy of the block in the memory contain the same data. Subsequent requests from
any processor are serviced by the memory.

» Consider now the situation in which two processors have copies of the same
block in their respective caches, and both processors attempt to write to the same cache
block at the same time. Since the block is in the shared state, the memory is the owner of
the block. Hence, both processors request the use of the bus to broadcast an invalidation
message. One of the processors is granted the use of the bus first. That processor broadcasts

126

its invalidation request and becomes the new owner of the block. Through snooping, the
copy of the block in the cache of the other processor is invalidated. When the other processor
is later granted the use of the bus, it broadcasts a read-exclusive request. This request
combines a read request and an invalidation request for the same block. The controller for
the first processor snoops the read-exclusive request, provides a data response on the bus, and
invalidates the copy in its cache. Ownership of the block is therefore transferred to the
second processor making the request. The memory is not updated because the block is
being modified again. Since the requests from the two processors are handled sequentially,
cache coherence is maintained at all times.

» The scheme just described is based on the ability of cache controllers to
observe the activity on the bus and take appropriate actions. Such schemes are called
snoopy-cache techniques.

Main Memory

Snooping based protocol

Directory-Based Cache Coherence:

The concept of snoopy caches is easy to implement in single-bus systems. Large shared
memory multiprocessors use interconnection networks such as rings and meshes. In such
systems, broadcasting every single request to the caches of all processors is inefficient. A
scalable, but more complex, solution to this problem uses directories in each memory module
to indicate which nodes may have copies of a given block in the shared state. If a block is
modified, the directory identifies the node that is the current owner. Each request from a
processor must be sent first to the memory module containing the relevant block. The
directory information for that block is used to determine the action that is taken. A read
request is forwarded to the current owner, if the block is modified. In the case of a write
request for a block that is shared, individual invalidations are sent only to nodes that may
have copies of the block in question. The cost and complexity of the directory-based approach
for enforcing cache coherence limits its use to large systems. Small multiprocessors, including
current multicore chips, typically use snooping.

127

128

MODULE-5

MEMORY ORGANIZATION

Memory Interleaving:

Pipeline and vector processors often require simultaneous access to memory from two
or more sources. An instruction pipeline may require the fetching of an instruction and an
operand at the same time from two different segments.

Similarly, an arithmetic pipeline usually requires two or more operands to enter the
pipeline at the same time. Instead of using two memory buses for simultaneous access, the
memory can be partitioned into a number of modules connected to a common memory address
and data buses. A memory module is a memory array together with its own address and data
registers. Figure 9-13 shows a memory unit with four modules. Each memory array has its own
address register AR and data register DR.

Figure 9-13 Multiple module memory organization.

Address bus
Y Y
Lo | [| [& | [
l ! |
Memory Memory Memory Memory
array array array amay
| A / |
1 Y A
DR I L DR J I DR | | DR
4 A A L
A Y 1
Data bus

v' The address registers receive information from a common address bus and the
data registers communicate with a bidirectional data bus. The two least significant bits of
the address can be used to distinguish between the four modules. The modular system
permits one module to initiate a memory access while other modules are in the process of
reading or writing a word and each module can honor a memory request independent of the
state of the other modules.

v' The advantage of a modular memory is that it allows the use of a technique
called interleaving. In an interleaved memory, different sets of addresses are assigned to
different memory modules. For example, in a two-module memory system, the even
addresses may be in one module and the odd addresses in the other.

v" Concept of Hierarchical Memory Organization
v' This Memory Hierarchy Design is divided into 2 main types:
v' External Memory or Secondary Memory

129

Increasing order of Cache Auxiliary Memory
access time ratio Memory

v" Comprising of Magnetic Disk, Optical Disk, Magnetic Tape i.e. peripheral
storage devices which are accessible by the processor via I/0 Module.

v Internal Memory or Primary Memory

v' Comprising of Main Memory, Cache Memory & CPU registers. This is
directly accessible by the processor.

Memory Hierarchy in a Computer System:

Register Magnetic

Tapes

A
A

Main
Memory

Memory

1/0 Processor

—

Magnetic

Main Memory Primary Memory disks
ic Di Cache
Magnetic Disks Ausillary cPU e
Memory

Magnetic Tapes

v Characteristics of Memory Hierarchy Capacity:

v It is the global volume of information the memory can store. As we move from
top to bottom in the Hierarchy, the capacity increases.

v' Access Time:

v It is the time interval between the read/write request and the availability of the
data. As we move from top to bottom in the Hierarchy, the access time increases.

v Performance:

v Earlier when the computer system was designed without Memory Hierarchy
design, the speed gap increases between the CPU registers and Main Memory due to large
difference in access time. This results in lower performance of the system and thus,
enhancement was required. This enhancement was made in the form of Memory Hierarchy
Design because of which the performance of the system increases. One of the most
significant ways to increase system performance is minimizing how far down the memory
hierarchy one has to go to manipulate data.

v" Cost per bit:

v" As we move from bottom to top in the Hierarchy, the cost per bit increases i.e.
Internal Memory is costlier than External Memory.

v

v" Cache Memories:

v' The cache is a small and very fast memory, interposed between the processor
and the main memory. Its purpose is to make the main memory appear to the processor to
be much faster than it actually is. The effectiveness of this approach is based on a property
of computer programs called locality of reference.

v" Analysis of programs shows that most of their execution time is spent in
routines in which many instructions are executed repeatedly. These instructions may
constitute a simple loop, nested loops, or a few procedures that repeatedly call each other.

v' The cache memory can store a reasonable number of blocks at any given time,
but this number is small compared to the total number of blocks in the main memory. The
correspondence between the main memory blocks and those in the cache is specified by a
mapping function.

v" When the cache is full and a memory word (instruction or data) that is not in
the cache is referenced, the cache control hardware must decide which block should be
removed to create space for the new block that contains the referenced word. The collection

130

4

of rules for making this decision constitutes the cache*s replacement algorithm.
v

v Cache Hits

v The processor does not need to know explicitly about the existence of the
cache. It simply issues Read andWrite requests using addresses that refer to locations in the
memory. The cache control circuitry determines whether the requested word currently exists
in the cache.

v'If it does, the Read orWrite operation is performed on the appropriate cache
location. In this case, a read

v’ or write hit is said to have occurred.

v

v Cache Misses

v" A Read operation for a word that is not in the cache constitutes a Read miss. It

causes the block of words containing the requested word to be copied from the main
memory into the cache.

v

v Cache Mapping:

v' There are three different types of mapping used for the purpose of cache
memory which are as follows: Direct mapping, Associative mapping, and Set-Associative
mapping. These are explained as following below.

CACHE SIZE VS BLOCK SIZE
Cache Size:

e Represents the total capacity of the cache memory, which is a small, fast memory used to store
frequently accessed data for quicker retrieval.

e A larger cache size can store more data, potentially leading to faster access times and improved
system performance.

o Cache size is measured in bytes, kilobytes (KB), megabytes (MB), or gigabytes (GB).

o Examples of cache sizes include 32KB, 512KB, 1MB, or 8MB.
Block Size (Cache Line Size):

o Determines the amount of data that is transferred between the cache and main memory in a
single operation.

e When the CPU needs data that is not in the cache (a "cache miss"), the entire block containing
that data is fetched from main memory and stored in the cache.

o Larger block sizes can lead to better spatial locality (more data is likely to be accessed near the
requested data), but also mean that more data is fetched on a cache miss, potentially wasting
space if only a small portion of the block is needed.

o Smaller block sizes can lead to more cache misses, but also mean that only the necessary data is
fetched, potentially saving space and improving performance.

e Common block sizes in modern CPU architectures are 64 bytes.
Cache Mapping:

There are three different types of mapping used for the purpose of cache memory
which are as follows: Direct mapping, Associative mapping, and Set-Associative mapping.
These are explained as following below.

Direct mapping

The simplest way to determine cache locations in which to store memory blocks is the
direct- mapping technique. In this technique, block j of the main memory maps onto block j
modulo 128 of the cache, as depicted in Figure 8.16. Thus, whenever one of the main memory

131

blocks 0, 128, 256, . . . is loaded into the cache, it is stored in cache block 0. Blocks 1, 129,
257, . . . are stored in cache block 1, and so on. Since more than one memory block is mapped
onto a given cache block position, contention may arise for that position even when the cache is
not full.

For example, instructions of a program may start in block 1 and continue in block 129,
possibly after a branch. As this program is executed, both of these blocks must be transferred to
the block-1 position in the cache. Contention is resolved by allowing the new block to
overwrite the currently resident block.

With direct mapping, the replacement algorithm is trivial. Placement of a block in
the cache is determined by its memory address. The memory address can be divided into
three fields, as shown in Figure 8.16. The low-order 4 bits select one of 16 words in a block.

When a new block enters the cache, the 7-bit cache block field determines the cache
position in which this block must be stored. If they match, then the desired word is in that block
of the cache. If there is no match, then the block containing the required word must first be read
from the main memory and loaded into the cache.

The direct-mapping tﬁchnique is easy to implement, but it is not very flexible.

memory

Block O

Block 1

Cache Block 127
Block 0 Block 128

Block 1 Block 1720

Block 127

Block 4005

Tag Block Word
I 5 I T I 4 I.‘du-.n:'rxrnury address

Figure 8.16 Dired-mapped cache.

Associative Mapping

In Associative mapping method, in which a main memory block can be placed into any cache block
position. In this case, 12 tag bits are required to identify a memory block when it is resident in the
cache. The tag bits of an address received from the processor are compared to the tag bits of each
block of the cache to see if the desired block is present. This is called the associative-mapping
technique.

132

Main
MmOy

Black O

Black 1

Cache

Block 0
Block 1

L= e

Block 4095

Tag Word

Main memory address
Figure 8.17 Assodativemopped coche.
It gives complete freedom in choosing the cache location in which to place the memory block,
resulting in a more efficient use of the space in the cache. When a new block is brought into the
cache, it replaces (ejects) an existing block only if the cache is full. In this case, we need an
algorithm to select the block to be replaced.

0 avoid a long delay, the tags must be searched in parallel. A search of this kind is called an
associative search.

Set-Associative Mapping

Another approach is to use a combination of the direct- and associative-mapping techniques. The
blocks of the cache are grouped into sets, and the mapping allows a block of the main memory to
reside in any block of a specific set. Hence, the contention problem of the direct method is eased by
having a few choices for block placement.

133

Main

MemOTy
Block 0
Block |
Cache T
Set0 4 — Block 63
[=2 B ok —
Setl = Block 2 Block 65
(E1 DCK B
L | Block 3]
= — Block 127
Set 63 < S
lag -
. Block 127
Block 129
Block 4095
Tag Seat Word
I & I & I 4 I Main memory address

Figure 8.18 Sef-associative-mapped coche with two blodks per set.

At the same time, the hardware cost is reduced by decreasing the size of the associative search.An
example of this set-associative-mapping technique is shown in Figure 8.18 for a cache with two
blocks per set. In this case, memory blocks 0, 64, 128, . .., 4032 map into cache set 0, and they can
occupy either of the two block positions within this set.

Having 64 sets means that the 6-bit set field of the address determines which set of the cache might
contain the desired block. The tag field of the address must then be associatively compared to the tags
of the two blocks of the set to check if the desired block is present. This two-way associative search is
simple to implement.

The number of blocks per set is a parameter that can be selected to suit the requirements of a articular
computer. For the main memory and cache sizes in Figure 8.18, four blocks per set can be
accommodated by a 5-bit set field, eight blocks per set by a 4-bit set field, and so on. The extreme
condition of 128 blocks per set requires no set bits and corresponds to the fully-associative technique,
with 12 tag bits. The other extreme of one block per set is the direct-mapping.

Replacement Algorithms

In a direct-mapped cache, the position of each block is predetermined by its address; hence, the
replacement strategy is trivial. In associative and set-associative caches there exists some flexibility.
When a new block is to be brought into the cache and all the positions that it may occupy are full, the
cache controller must decide which of the old blocks to overwrite.

134

This is an important issue, because the decision can be a strong determining factor in system
performance. In general, the objective is to keep blocks in the cache that are likely to be
referenced in the near future. But, it is not easy to determine which blocks are about to be
referenced.
The property of locality of reference in programs gives a clue to a reasonable strategy. Because
program execution usually stays in localized areas for reasonable periods of time, there is a
high probability that the blocks that have been referenced recently will be referenced again
soon. Therefore, when a block is to be overwritten, it is sensible to overwrite the one that has
gone the longest time without being referenced. This block is called the least recently used
(LRU) block, and the technique is called the LRU replacement algorithm.

The LRU algorithm has been used extensively. Although it performs well for
many access patterns, it can lead to poor performance in some cases.

Write Policies
The write operation is proceeding in 2 ways.
e Write-through protocol
e Write-back protocol

Write-through protocol:

Here the cache location and the main memory locations are updated simultaneously.

Write-back protocol:
e This technique is to update only the cache location and to mark
it as with associated flag bit called dirty/modified bit.

e The word in the main memory will be updated later, when the block
containing this marked word is to be removed from the cache to make
room for a new block.

e To overcome the read miss Load —through / Early restart protocol is used.

135

	COMPUTER ORGANIZATION AND ARCHITYECTURE
	Prepared by:

	COMPUTER ORGANIZATION AND ARCHITYECTURE (1)
	COMPUTER ORGANIZATION AND ARCHITYECTURE (2)
	Functional blocks of a computer:
	Fig:Basic functional units of a computer.
	 Memory Unit:

	Basic Operational Concepts
	Load R2, LOC
	Add R4, R2, R3
	Store R4, LOC
	Fig 1.1: Connection between the processor and the main memory

	Von Neumann Architecture:
	Following are the components of Von Neumann Architecture:
	b) Arithmetic and Logic Unit (ALU) :

	Instruction set architecture of a CPU: Architecture of 8086:
	i. Execution unit (EU)
	EXECUTION UNIT
	Functions of EU
	Functions of various parts of EU

	BUS INTERFACE UNIT
	Functions of BIU
	Logical and Physical Address
	Difference between the physical and the logical address:
	Register Transfer Language:
	 The Register Transfer Language is the symbolic representation of notations used to specify the sequence of micro-operations.
	Register Transfer:
	Fig: Block diagram of registers
	Fig: Timing Diagram

	Memory Transfer:
	Read: DR <- M [AR]
	Write: M[AR]  R1
	Instruction cycle:
	T1: IR M[AR], PC PC + 1
	T2: D0, …, D7  Decode IR(12-14),AR  IR(0-11), I IR(l5)

	Addressing Modes ADDRESSING MODES OF 8086:

	REGISTER INDIRECT ADDRESSING MODE
	Instruction Set:
	Arithmetic instructions: The four basic arithmetic operations are addition, subtraction, multiplication, and division. Most computers provide instructions for all four operations. Some small computers have only addition and possibly subtraction instru...

	MODULE-2
	NUMBER REPRESENTATION:
	SIGNED INTEGERS
	Fig: Binary signed number Representations
	Fixed and Floating point Representations:
	(i) Fixed Point Notation and
	Floating Point Representation:

	NORMALIZATION OF A FLOATING POINTNUMBER:
	Advantages of Normalization.

	SHORT REAL FORMAT / SINGLE PRECISION FORMAT / IEEE 754: 32 BIT FORMAT:
	LONG REAL FORMAT / DOUBLE PRECISION FORMAT / IEEE 754: 64 BIT FORMAT
	Extreme cases of floating point numbers:
	Overflow:
	Example: Convert 2A3BH into Short Real format.
	Normalizing the number we get:
	Bias value for Short Real format is 127:
	Converting the Biased exponent into binary we get:
	Representing in the required format we get:

	Computer Arithmetic
	Integer Addition:
	Addition and Subtraction of Signed Integers:
	X-Y = X+(-Y) = X+(2’S Complement of Y)
	ONE BIT ADDITION: FULL ADDER
	RIPPLE CARRY ADDER(For Multiple bit addition):
	Inputs:
	X = X0 X1 X2 X3 (X0 is the MSB … X3 is the LSB) Y = Y0 Y1 Y2 Y3 (Y0 is the MSB … Y3 is the LSB) CIN = Carry Input
	Z = Z0 Z1 Z2 Z3 (Z0 is the MSB … Z3 is the LSB)(Here Z represents the sum) COUT = Carry Output
	Carry Look ahead Adder(For multiple bit Addition):
	Inputs: (1)
	X = X0 X1 X2 X3 (X0 is the MSB … X3 is the LSB); Y = Y0 Y1 Y2 Y3 & CIN = Carry Input
	Z = Z0 Z1 Z2 Z3 & COUT = Carry Output
	Fig: Circuit for Carry Look ahead Adder

	Multiplication:
	Algorithm:
	Fig: Shift and Add Multiplication

	2) ​Booth Multiplier(For signed Multiplication):
	Algorithm: (1)
	Flowchart for Booth’s Algorithm:
	Restoring and Non-Restoring Division:
	Algorithm: (2)
	RESTORING DIVISION (For unsigned Numbers)
	Algorithm: (3)

	RESTORING DIVISION FOR SIGNED NUMBERS:
	Algorithm:
	Note: The result of this algorithm is such that, the quotient will always be positive and the remainder will get the same sign as the dividend.

	Carry-save Array Multiplier
	Results
	MODULE-3
	CPU CONTROL UNIT DESIGN
	 Hardwired CU :
	STATE TABLE METHOD:

	11) A multiple entry point is substituted by an OR gate. ADVANTAGE:

	DRAWBACK:
	SEQUENCE COUNTER METHOD:
	GENERAL DRAWBACKS OF A HARDWIRED CONTROL UNIT

	Micro programmed CU
	WILKES’ DESIGN FOR A MICROPROGRAMMED CONTROL UNIT:
	ADVANTAGES
	DRAWBACKS
	TYPICAL MICROPROGRAMMED CONTROL UNIT
	ADVANTAGES (1)
	DRAWBACKS (1)

	Memory System Design
	Semiconductor Memory Technologies:
	MEMORY ORGANIZATION
	Memory Interleaving:
	Concept of Hierarchical Memory Organization
	External Memory or Secondary Memory
	Internal Memory or Primary Memory
	Characteristics of Memory Hierarchy
	Access Time:
	Performance:
	Cost per bit:
	Cache Memories:
	Cache Hits
	Cache Misses
	Cache Mapping:
	Direct mapping
	Associative Mapping
	Set-Associative Mapping
	Replacement Algorithms
	Write Policies
	Write-through protocol:
	Write-back protocol:
	Virtual Memory Management /Paging:
	Internal Memory Organization:
	Fig: Organization of bit cells in a memory chip.

	Memory Hierarchy
	Main Memory
	Secondary Memory (Auxiliary Memory):
	Cache Memory:
	Fig: Memory Hierarchy in a computer system

	Memory Interleaving
	Fig: Multiple module memory organization.

	Cache Memory: (1)
	Fig: Use of Cache Memory
	Cache Hits:
	Cache Misses

	Peripheral Devices and Their Characteristics
	I/o Device Interface:
	l/O Bus and Interface Modules:
	Fig: Connection of I/O bus to input-output devices.
	There are three ways that computer buses can be used to communicate with memory and I/O:

	DATA TRANSFER MODES:
	Serial transmission can be synchronous or asynchronous.
	Eg:Any two units of a digital system are designed independently, such as CPU and I/O interface. If the registers in the I/O interface share a common clock with CPU registers, then transfer between the two units is said to be synchronous.

	I/O Transfers:
	Example of Programmed I/0:
	2) INTERRUPT DRIVEN I/O:

	2) Instead, an I/O device which wants to perform a data transfer with the processor, must give an interrupt to the processor.
	6) The processor is free to carry on its own operations.
	10) Hence interrupt driven I/O is much better than Polled I/O (Programmed I/O). INTERRUPT HANDLING MECHANISM
	DMA means transferring data directly between memory and I/O.
	13) DMAC returns the system bus to Processor by making HOLD = 0.
	Drawback of DMA
	Difference between Interrupt Request and DMA request

	TYPES / METHODS / TECHNIQUES OF DMA TRANSFERS
	1) BLOCK TRANSFER MODE / BURST MODE.
	2) SINGLE BYTE TRANSFER MODE/ CYCLE STEALING.
	3) DEMAND TRANSFER MODE.
	4) HIDDEN MODE / TRANSPARENT MODE.
	Interrupts and Exceptions:
	Example –
	Exception
	Example – (1)

	1. VECTORED AND NON-VECTORED INTERRUPTS
	If an interrupt has a fixed ISR address, it is called a Vectored interrupt.

	2. ​MASKABLE AND NON MASKABLE INTERRUPTS
	3. ​SOFTWARE AND HARDWARE INTERRUPTS
	E.g.:: NMI and INTR pins of 8086 I/O Device Interfaces:
	Plug-and-Play
	USB Architecture:
	Isochronous Traffic on USB
	Electrical Characteristics:
	SCSI Bus:
	Data Transfer

	MODULE-4
	RISC vs CISC Architecture
	Pipelining and Parallel Processors
	Basic Concepts of Pipelining :
	R3 <--R 1 * R2, R4 <--C, R5 <--R3 + R4
	Instruction Pipelining:

	2 STAGE PIPELINING - 8086
	3 STAGE PIPELINING –ARM 7
	ADVANTAGE OF PIPELINING
	DRAWBACKS/ HAZARDS OF PIPELINING
	1) DATA HAZARD/ DATA DEPENDENCY HAZARD
	RAW:
	WAW
	2) CONTROL HAZARD/ CODE HAZARD
	3) STRUCTURAL HAZARD
	E.g.: PIC 18 Microcontroller.
	Shared Memory Multiprocessors:
	 A system which has the same network latency for all accesses from the processors to the memory modules is called a Uniform Memory Access (UMA) multiprocessor.
	Fig: A UMA multiprocessor.
	Fig: A NUMA multiprocessor.

	Bus:
	Ring:
	Fig: Simple Ring

	Crossbar:
	Mesh:
	Fig : A two-dimensional mesh network.

	Cache Coherence:
	Write Through Protocol:
	Write-Back protocol:
	 Read: When another processor wishes to read a block that has been modified, the request for the block must be forwarded to the current owner. The data
	Snoopy Caches:
	coherence can be realized using a scheme known as snooping.

	 The scheme just described is based on the ability of cache controllers to observe the activity on the bus and take appropriate actions. Such schemes are called snoopy-cache techniques.
	Directory-Based Cache Coherence:
	MODULE-5

	MEMORY ORGANIZATION
	Memory Interleaving:
	Associative Mapping
	Set-Associative Mapping
	Replacement Algorithms
	Write Policies
	Write-through protocol:
	Write-back protocol:

