

VIKASH INSTITUTE OF TECHNOLOGY, BARGARH

LESSON PLAN

Semester:4th		Year:2024-25	Course: B.Tech		
Branch :Civil Engineering		Sub: Structural Analysis	Total Credit:03		
		Sub Code :			
Name of the Faculty:		Anjana Khamari			
Designation :		Assistant Professor			
Department :		Civil Engineering			
Session Recommended Books		2024-25 Text book:			
		1.R. C.Hibbeler,Structural analysis,Pearson Prentice Hall			
		2. K. Leet,C. M. Uang &A. M. Gilbert, Fundamentals of structural analysis. McGraw-Hill Higher Education.			
		Reference Books:			
		1. Louis F. Geschwindner&Harry H.West, Fundamentals of Structural Analysis.Wiley publication			
		2. C. S. Reddy. Basic structural analysis. McGraw Hill Education. S.S. Bhav	ikatti, Structural Analysis.Vi	ikas Publishing House	
Sl. No.	Lecture No.	Topics to be covered		No. of Classes	
	-	MODULE-I			
1	Lecture-01	Concept of determinate and indeterminate structures, determination of degree of static and kinematic indeterminacy in plane frame and continuous structures.			
2	Lecture-02	Problem Practice	8		
3	Lecture-03	Methods of Analysis: Equilibrium equations, compatibility requiremen anddisplacement methods.			
4	Lecture-04	Problem Practice			
5	Lecture-05	Analysis of propped cantilever by consistent deformation method,			
6	Lecture-06	Problem Practice			
7	Lecture-07	Analysis of fixed and continuous beams by Moment-Area method, Conjugate beam method and theorem of threemoments.			
8	Lecture-08	Problem Practice			
	-	MODULE-2		-	
9	Lecture-09	Energy theorems and its application, Strain energy method,			
10	Lecture-10	Virtual work method, unit loadmethod, Betti's and Maxwell's laws,			
11	Lecture-11	Castigliano's theorem, concept of minimum potential energy. Theories	of failure,		
12	Lecture-12	Maximum normal stress theory, maximum normal strain theory,		8	
13	Lecture-13	maximum shearing strain theory, maximum strain energy theory,		Ŭ	
14	Lecture-14	maximum distortion energy theory,			
15	Lecture-15	maximum octahedral shearingstress theory.			
16	Lecture-16	Problem Practice			
	-	MODULE-3			
17	Lecture-17	Analysis of redundant plane trusses.			
18	Lecture-18	Deflection of pin jointed plane trusses using strain energy method,	ethod,		
19	Lecture-19	unit load method.			
20	Lecture-20	Analytical method and Williot –Mohr diagram.Introduction to space tr	uss.	ρ	
21	Lecture-21	ecture-21 Arches: Introduction and classification of arches,			

22	Lecture-22	Problem Practice				
23	Lecture-23	Bending moment, shear and normal thrust of three hinged archesSuspension Cables: Three hinged stiffening girders				
24	Lecture-24	Problem Practice				
MODULE-4						
25	Lecture-25	Rolling loads and influence lines for determinate structures, simply supported beams, cantilever,				
26	Lecture-26	Influence Line Diagram for reaction, shear force and bending moment at a section,				
27	Lecture-27	Influence Line Diagram for wheel loads, point loads and uniformly distributed loads				
28	Lecture-28	maximum bending moment envelope.Influence	0			
29	Lecture-29	Lecture-29 Problem Practice				
30	Lecture-30	Line Diagram for Bending Moment, Shear Force, normal thrust and radial shear forthree hinged arches.				
31	Lecture-31	Problem Practice				
32	Lecture-32	Problem Practice				

Signature of Faculty Member

Signature of HOD

PRINCIPAL