

VIKASH INSTITUTE OF TECHNOLOGY, BARGARH Institute of Technology LESSON PLAN

Semester:	4th	Year: 2nd	Course: B.Tech			
		Sub: DESIGN AND ANALYSIS OF ALGORITHMS	Total Credit:03			
Branch :	CSE	Sub Code : CSPC2006				
Name of t	he Faculty:	ALINA KUMARI SWAIN				
Designation :		Assistant professor				
Department :		CSE				
Session		2024-25				
Recommended Books		Text book:				
		T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, "Introduction to Algorithms", PHI Publication.				
		A.V. Aho, J. E. Hopcroft and J.D. Ullman, "The Design and Analysis of Computer Algorithms", Pearson Ed				
		Reference Books:				
		Computer Algorithms/C++, Ellis Horowitz, SatrajSahni and Rajasekaran, 2	s Press.			
		Introduction to the Design and Analysis of Algorithms, Anany Levitin: 2nd Edition, 2009. Pearson.				
51. NO.	Lecture No.	Topics to be covered		No. of Classes		
MODULE-1						
1	Lecture-01	Notion of Algorithm: Growth of functions				
2	I actura-02	Recurrences: The Master method				
	Ecclure-02	Accurences. The musici incurou				
3	Lecture-03	The Substitution method				
4	Lecture-04	The Iteration method		_		
5	Lecture-05	Asymptotic Notations and Basic Efficiency Classes (Use of Big O, θ , algorithms	8			
6	Lecture-06	Mathematical Analysis of few Non-Recursive				
7	Lecture-07	Recursive Algorithms.				
8	Lecture-08	Asymptotic Notations				
MODULE-2						
9	Lecture-09	Sorting and Searching Techniques				
10	Lecture-10	Selection Sort, Bubble Sort, Insertion Sort and their analysis,				
11	Lecture-11	Sequential Search, Binary Search				
12	Lecture-12	Depth First Search and Breadth First Search				
13	Lecture-13	Balanced Search Trees, AVL Trees, Red-Black Trees		10		
14	Lecture-14	Heaps and Heap Sort		10		
15	Lecture-15	Disjoint Set and their Implementation				
16	Lecture-16	Divide and Conquer Paradigm of problem solving				
17	Lecture-17	Complexity analysis and understanding of Merge Sort				
18	Lecture-18	Quick Sort, Binary Search Trees				

MODULE-3					
19	Lecture-19	Greedy Techniques: Prim's Algorithm			
20	Lecture-20	Kruskal's Algorithm, Dijkstra's and Bellman Ford Algorithm	1		
21	Lecture-21	Huffman Trees, Knapsack problem	1		
22	Lecture-22	Dynamic Programming Paradigm: Floyd-Warshall Algorithm	-		
23	Lecture-23	Optimal Binary Search trees	9		
24	Lecture-24	Matrix Chain Multiplication Problem			
25	Lecture-25	Longest Common Subsequence Problem			
26	Lecture-26	0/1 Knapsack Problem			
27	Lecture-27	Maximum Network Flow Problem.	1		
MODULE-4					
28	Lecture-28	String Matching Algorithms: Naive string-matching algorithm			
29	Lecture-29	The Rabin-Karp Algorithm, string matching with Finite Automata			
30	Lecture-30	Knuth Morris Pratt string matching algorithm			
31	Lecture-31	Backtracking: n-Queen's problem			
32	Lecture-32	Hamiltonian Circuit problem	- 8		
33	Lecture-33	Subset-Sum problem			
34	Lecture-34	State Space Search Tree for these problems			
35	Lecture-35	kruskal,prim			
MODULE-5					
36	Lecture-36	Branch and Bound: Travelling Salesman Problem and its State Space Search Tree.			
37	Lecture-37	Introduction to Computability	4		
38	Lecture-38	Polynomial-time verification	5		
39	Lecture-39	NP-Completeness and Reducibility, NP- Complete problems	4		
40	Lecture-40	Approximation Algorithms: Vertex Cover Problem			

Signature of Faculty Member

Signature of HOD

PRINCIPAL