

VIKASH INSTITUTE OF TECHNOLOGY, BARGARH

LESSON PLAN

	0,			
Semester:2nd		Year: 2025	Course: B.Tech	
		Sub: MATHEMATICS-II	Total Credit:03	
Branch : ALL		Sub Code :		
Name of the Faculty:		TULASI GOUD		
Designation :		ASSISTANT PROFESOR		
Department :		BSH		
Session		2024-25		
		Text book:		
Recommended Books		1.Erwin Kreyszig, Advanced Engineering Mathematics		
		2.E.M. Stein, Fourier Analysis: An Introduction Reference Books:		
		<u>Reference Books</u> : 1.Veerarajan T., Engineering Mathematics for first year,		
		2.S. L. Ross, Differential Equations, 3rd Edition, Wiley India,		
Sl. No. Lecture No.		Topics to be covered		No. of Classes
			-	
		MODULE-1		
1	Lecture-01	First order ODE : Exact ODEs.		
2	Lecture-02	Integrating factors.		
3	Lecture-03	Linear first order ODEs.		1
4	Lecture-04	Nonlinear first order ODE and Bernoulli's equations		1
5	Lecture-05	Applications to Population growth		8
6	Lecture-06	Newton's law of cooling, RL circuit		1
7	Lecture-07	Second order linear differential equations with constant coefficients	efficients,	1
8	Lecture-08	Euler-Cauchy equations,		
		MODULE-2		
9	Lecture-09	method of undetermined coefficients,		
10	Lecture-10	solution by variation of parameters.		
11	Lecture-11	Power series solutions of ODE.		1
12	Lecture-12	Legendre's equations (explicit solution only).		
13	Lecture-13	Vector Calculus :		1
14	Lecture-14	Vector and Scalar Functions and Fields,		10
15	Lecture-15	Derivatives, Gradient of a Scalar Field,		1
16	Lecture-16	Directional Derivative,		1
17	Lecture-17	Divergence of a Vector Field,		1
18	Lecture-18	Curl of a Vector Field,		1
10	Lecture-10			

	MODULE-3						
19	Lecture-19	Line Integrals,					
20	Lecture-20	Path Independence of Line Integrals,					
21	Lecture-21	,Double Integrals					
22	Lecture-22	Green's Theorem in the Plane (Statement and applications)					
23	Lecture-23	Complex Analysis :	9				
24	Lecture-24	Limit,					
25	Lecture-25	Continuity,					
26	Lecture-26	Derivative,					
27	Lecture-27	Analytic Function,					
	MODULE-4						
28	Lecture-28	Cauchy-Riemann Equations,					
29	Lecture-29	Laplace's Equation,					
30	Lecture-30	Exponential Function,					
31	Lecture-31	Trigonometric and logarithm functions.					
32	Lecture-32	Line Integral in the Complex Plane,	10				
33	Lecture-33	Cauchy's Integral Theorem,	10				
34	Lecture-34	Cauchy's Integral Formula,					
35	Lecture-35	Derivatives of Analytic Functions,					
	Lecture-36	Laurent series,					
37	Lecture-37	Residue theorem with simple problems.					

Signature of Faculty Member

Signature of HOD

PRINCIPAL